Abstract
A Szilard language is a well-known tool in formal language theory to express the derivation process in a grammar system or grammar. Matrix InsDel (insertion–deletion) system is a well-known variant of InsDel system, where the idea of matrix control is combined with InsDel systems. The size of a matrix InsDel system is represented by a septuple of integers \((k; p, m, m^{'};\) \(q, n, n^{'})\), where k represents maximum number of rules in a matrix, i.e., size of a matrix. The parameters p, m and \(m^{'}\) represent the maximal length of the strings inserted, the maximal length of the left context and the maximal length of the right context of the insertion rules, respectively. The parameters \(q, n, n^{'}\) represent the same for deletion rules. In this paper, we investigate the Szilard languages of matrix InsDel systems with matrices of size 2. We give examples of regular, context-free and context-sensitive languages which cannot be the Szilard language of any matrix InsDel system. We show that any regular language can be represented as a homomorphic image of Szilard language of matrix InsDel system of size (2; 2, 0, 0; 1, 0, 0). Any linear language, meta-linear language and rational (or regular) closure of linear language can be obtained as the homomorphic image of Szilard language of matrix InsDel systems of size (2; 1, 1, 0; 1, 1, 0), and (2; 1, 0, 1; 1, 0, 1). Moreover, any recursively enumerable language can be obtained as the homomorphic image of the Szilard language of matrix InsDel systems of size (2; 1, 1, 0; 1, 1, 1), (2; 1, 0, 1; 1, 1, 1), (2; 1, 1, 1; 1, 1, 0), (2; 1, 1, 1; 1, 0, 1), (2; 1, 1, 0; 2, 0, 0), (2; 1, 0, 1; 2, 0, 0), (2; 2, 0, 0; 1, 1, 0), and (2; 2, 0, 0; 1, 0, 1).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adorna, H. N. (2020). Computing with SN P systems with i/o mode. Journal of Membrane Computing, 2(4), 230–245.
Alhazov, A., Krassovitskiy, A., Rogozhin, Y., & Verlan, S. (2011). P systems with minimal insertion and deletion. Theoretical Computer Science, 412(1–2), 136–144.
Benne, R. (Ed.). (1993). RNA editing: the alteration of protein coding sequences of RNA. Ellis Horwood (Molecular Biology).
Biegler, F., Burrell, M. J., & Daley, M. (2007). Regulated RNA rewriting: Modelling RNA editing with guided insertion. Theoretical Computer Science, 387(2), 103–112.
Buiu, C., & Florea, A. G. (2019). Membrane computing models and robot controller design, current results and challenges. Journal of Membrane Computing, 1(4), 262–269. https://doi.org/10.1007/s41965-019-00029-8.
Cojocaru, L., & Mäkinen, E. (2014). On some derivation mechanisms and the complexity of their Szilard languages. Theoretical Computer Science, 537, 87–96.
Dassow, J., Mitrana, V., & Păun, G. (1993). Szilard languages associated to cooperating distributed grammar systems. Stud. Cercet. Mat., 45, 403–413.
Dassow, J., & Păun, Gh. (1989). Regulated rewriting in formal language theory. Springer-Verlag.
de la Cruz, R. T. A., Cabarle, F. G. C., & Adorna, H. N. (2019). Generating context-free languages using spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(3), 161–177.
de la Cruz, R. T. A., Cabarle, F. G. C., Macababayao, I. C. H., Adorna, H. N., & Zeng, X. (2021). Homogeneous spiking neural P systems with structural plasticity. Journal of Membrane Computing, 3, 10–21. https://doi.org/10.1007/s41965-020-00067-7.
Duske, J., Parchmann, R., & Specht, J. (1979). Szilard languages of IO-grammars. Information and Control, 40(3), 319–331.
Fernau, H., Kuppusamy, L., Verlan, S. (2017). Universal matrix insertion grammars with small size. In: M. Patitz, M. Stannett (Eds.), UCNC 2017, Unconventional Computation and Natural Computation. LNCS (vol 10240, pp. 182–193).
Fernau, H., Kuppusamy, L., & Raman, I. (2016). Generative power of matrix insertion-deletion systems with context-free insertion or deletion. In M. Amos & A. Condon (Eds.), Unconventional computation and natural computation conference, UCNC (LNCS) (Vol. 9726, pp. 35–48). Springer.
Fernau, H., Kuppusamy, L., & Raman, I. (2017). Graph-controlled insertion-deletion systems generating language classes beyond linearity. In G. Pighizzini & C. Caḿpeanu (Eds.), Descriptional complexity of formal systems: 19th IFIP WG 1.02 international conference, DCFS (LNCS) (Vol. 10316, pp. 128–139). Springer.
Fernau, H., Kuppusamy, L., & Raman, I. (2017). On the generative power of graph-controlled insertion-deletion systems with small sizes. Journal of Automata, Languages and Combinatorics, 22, 61–92.
Fernau, H., Kuppusamy, L., & Raman, I. (2018). Investigations on the power of matrix insertion-deletion systems with small sizes. Natural Computing, 17, 249–269.
Fernau, H., Kuppusamy, L., & Raman, I. (2018). Properties of Language Classes Between Linear and Context-free. Journal of Automata, Languages and Combinatorics, 23(4), 329–360.
Fernau, H., Kuppusamy, L., & Raman, I. (2018). On describing the regular closure of the linear languages with graph-controlled insertion-deletion systems. RAIRO-Theoretical Informatics and Applications, 52, 1–21.
Freund, R., Kogler, M., Rogozhin, Y., Verlan, S. (2010). Graph-controlled insertion-deletion systems. In: I. McQuillan, G. Pighizzini (Eds.), Proceedings twelfth annual workshop on descriptional complexity of formal systems, DCFS (EPTCS) (vol 31, pp. 88–98).
Galiukschov, B.S. (1981). Semicontextual grammars. Mat. logica i mat. ling., Kalinin University, 38–50 (in Russian).
Ganbaatar, G., Nyamdorj, D., Cichon, G., & Ishdorj, T.-O. (2021). Implementation of RSA cryptographic algorithm using SN P systems based on HP/LP neurons. Journal of Membrane Computing, 3, 22–34. https://doi.org/10.1007/s41965-021-00073-3.
Haussler, D. (1982). Insertion and iterated insertion as operations on formal languages. Ph.D. Thesis, Univ. of Colorado at Boulder.
Igarashi, Y. (1977). The tape complexity of some classes of Szilard languages. SIAM Journal of Computing, 6(3), 460–466.
Ivanov, S., & Verlan, S. (2015). Random context and semi-conditional insertion-deletion systems. Fundamenta Informatica, 138, 127–144.
Ivanov, S., & Verlan, S. (2017). Universality and computational completeness of controlled leftist insertion-deletion systems. Fundamenta Informatica, 155(1–2), 163–185.
Jiang, Y., Su, Y., & Luo, F. (2019). An improved universal spiking neural P system with generalized use of rules. Journal of Membrane Computing, 1(4), 270–278. https://doi.org/10.1007/s41965-019-00025-y.
Jimenez, Z. B., Cabarle, F. G. C., de la Cruz, R. T. A., Buno, K. C., Adorna, H. N., Hernandez, N. H. S., et al. (2019). Matrix representation and simulation algorithm of spiking neural p systems with structural plasticity. Journal of Membrane Computing, 1(3), 145–160.
Kari, L. (1991). On insertion and deletion in formal languages. PhD thesis, University of Turku.
Kari, L., & Thierrin, G. (1996). Contextual insertions/deletions and computability. Information and Computation, 131(1), 47–61.
Krassovitskiy, A., Rogozhin, Y., & Verlan, S. (2008). Further results on insertion-deletion systems with one-sided contexts. In C. Martín-Vide, F. Otto, & H. Fernau (Eds.), LATA 2008, LNCS 5196 (pp. 333–344). Springer.
Krassovitskiy, A., Rogozhin, Y., & Verlan, S. (2011). Computational power of insertion-deletion (P) systems with rules of size two. Natural Computing, 10, 835–852.
Kuppusamy, L., Rama, R. (2003). On the power of tissue P systems with insertion and deletion rules. In: Pre-proc of workshop on membrane computing, volume 28 of Report RGML (pp. 304–318). Univ. Tarragona.
Kuppusamy, L., & Mahendran, A. (2016). Modelling DNA and RNA secondary structures using matrix insertion-deletion systems. International Journal of Applied Mathematics and Computer Science, 26(1), 245–258.
Kuppusamy, L., Mahendran, A., & Krishna, S. N. (2011). Matrix insertion- deletion systems for bio-molecular structures. In R. Natarajan & A. K. Ojo (Eds.), Distributed computing and internet technology, 7th international conference, ICDCIT (LNCS) (Vol. 6536, pp. 301–312). Springer.
Kutrib, M., & Malcher, A. (2007). Finite turns and the regular closure of linear context-free languages. Discrete Applied Mathematics, 155(16), 2152–2164.
Lazo, P. P. L., Cabarle, F. G. C., & Adorna, H. N. (2021). A return to stochasticity and probability in spiking neural P systems. Journal of Membrane Computing. https://doi.org/10.1007/s41965-021-00072-4.
Mahalingam, K., & Paul, P. (2020). On Szilard languages of \(InsDel\) systems. Journal of Automata, Languages and Combinatorics, 25(4), 321–348.
Mahalingam, K., Paul, P., & Mäkinen, E. (2018). On derivation languages of a class of splicing systems. Acta Cybernetica, 23, 1–13.
Mahalingam, K., Paul, P., Song, B., Pan, L., & Subramanian, K. G. (2017). Derivation languages of Splicing P systems, BIC-TA 2017. CCIS, 791, 487–501.
Mäkinen, E. (1984). On context-free and Szilard languages. BIT, 24(2), 164–170.
Marcus, S. (1969). Contextual grammars. Revue Roumaine de Mathématiques Pures et Appliquées, 14, 1525–1534.
Margenstern, M., Păun, Gh., Rogozhin, Y., & Verlan, S. (2005). Context-free insertion-deletion systems. Theoretical Computer Science, 330(2), 339–348.
Mihalache, V. (1996). Szilard languages associated to parallel communicating grammar systems. In: Developments in Language Theory II, At the Crossroads of Mathematics, Computer Science and Biology, Magdeburg, Germany, July 1995 (pp. 247–256). World Scientific.
Moriya, E. (1973). The associate language and the derivation properties of formal grammars. Information and Control, 22, 139–162.
Ochirbat, O., Ishdorj, T. O., & Cichon, G. (2020). An error-tolerant serial binary full-adder via a spiking neural P system using HP/LP basic neurons. Journal of Membrane Computing, 2(1), 42–48. https://doi.org/10.1007/s41965-020-00033-3.
Pan, L., Păun, Gh., & Zhang, G. (2019). Foreword: Starting. Journal of Membrane Computing, 1(1), 1–2.
Pan, L., Song, B., Nagar, A. K., & Subramanian, K. G. (2018). Language generating alphabetic flat splicing P systems. Theoretical Computer Science, 724, 28–34.
Paul, P. (2020). On Szilard languages of labelled insertion grammars. Fundamenta Informetica, 172, 53–72.
Paul, P., & Ray, K. S. (2020). Derivation languages and descriptional complexity measures of restricted flat splicing systems. Theoretical Computer Science, 16, 19–36.
Păun, Gh. (1979). On Szilard’s languages associated to a matrix grammar. Information Processing Letters, 8(2), 104–105.
Păun, Gh. (1983). On some families of Szilard languages. Bulletin mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, 27(75), 259–265.
Păun, Gh., Rozenberg, G., Salomaa, A., & Computing, D. N. A. (1998). New computing paradigms. Springer-Verlag.
Penttonen, M. (1974). On derivation language corresponding to context-free grammars. Acta Informatica, 3, 285–291.
Penttonen, M. (1977). Szilard languages are \(log n\) tape recognizable. Elektron. Inf. verarb. Kybern., 13(11), 595–602.
Pérez-Hurtado, I., Orellana-Martín, D., Zhang, G., & Pérez-Jiménez, M. J. (2019). P-Lingua in two steps: exibility and efficiency. Journal of Membrane Computing, 1(2), 93–102.
Petre, I., & Verlan, S. (2012). Matrix insertion-deletion systems. Theoretical Computer Science, 456, 80–88.
Raman, I., & Kuppusamy, L. (2019). On describing super-linear languages by matrix insertion-deletion systems. International Journal of Advanced Engineering Science and Applied Mathematics, 11(1), 11–24.
Ramanujan, A. and Krithivasan, K. (2013). Control words of transition P systems, (BIC-TA 2012). In: Advances in Intelligent Systems and Computing201(2013), Springer.
Ramanujan, A., & Krithivasan, K. (2012). Control languages associated with Spiking Neural P systems. Romanian Journal of Information Science and Technology, 15(4), 301–318.
Ramanujan, A., & Krithivasan, K. (2013). Control Languages Associated with Tissue P Systems. UCNC 2013, LNCS. 7956(2013). Springer.
Rong, H., Yi, K., Zhang, G., Dong, J., Paul, P., & Huang, Z. (2019). Automatic implementation of fuzzy reasoning spiking neural P systems for diagnosing faults in complex power systems. Complexity, 2019, 16 (Article ID 2635714).
Rozenberg, G., & Salomaa, A. (Eds.). (1997). Handbook of formal languages (Vol. 1). Springer.
Ruzzo, W. (1981). On uniform circuit complexity. Journal of Computer and System Sciences, 22(3), 365–383.
Salomaa, A. (1973). Formal languages. Academic Press.
Song, B., Li, K., Orellana-Martín, D., Pérez-Jiménez, M. J., & Pérez-Hurtado, I. (2021). A survey of nature-inspired computing: membrane computing. ACM Computing Surveys, 54(1), 1–31.
Song, B., Li, K., & Zeng, X. (2021). Monodirectional evolutional symport tissue P systems with promoters and cell division. IEEE Transactions on Parallel and Distributed Systems. https://doi.org/10.1109/TPDS.2021.3065397.
Song, B., Zeng, X., Jiang, M., & Pérez-Jiménez, M. J. (2021). Monodirectional tissue P systems with promoters. IEEE Transactions on Cybernetics, 51(1), 438–450.
Stotskij, E. D. (1967). Some restrictions on derivations in context-sensitive grammars. Nauchno-Tekhnicheskaya Informatsiya Seriya, 2(7), 35–38.
Takahara, A., & Yokomori, T. (2003). On the computational power of insertion/deletion systems. Natural Computing, 2, 321–336.
Valencia-Cabrera, L., Pérez-Hurtado, I., & Martínez-del-Amor, M. A. (2020). Simulation challenges in membrane computing. Journal of Membrane Computing, 2(4), 392–402.
Verlan, S. (2007). On minimal context-free insertion-deletion systems. Journal of Automata, Languages and Combinatorics, 12(1–2), 317–328.
Verlan, S. (2010). Recent developments on insertion-deletion systems. Computer Science Journal of Moldova, 18(2), 210–245.
Wang, X., Zhang, G., Gou, X., Paul, P., Neri, F., Rong, H., et al. (2021). Multi-behaviors coordination controller design with enzymatic numerical P systems for robots. Integrated Computer-Aided Engineering, 28(2), 119–150.
Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., & Pérez-Jiménez, M. J. (2015). Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems, 30(3), 1182–1194.
Zhang, X., Liu, Y., Luo, B., & Pan, L. (2014). Computational power of tissue P systems for generating control languages. Information Sciences, 2014, 285–297.
Zhang, G., Pérez-Jiménez, M. J., & Gheorghe, M. (2017). Real-life applications with membrane computing. Springer.
Zhang, G., Pérez-Jiménez, M. J., Riscos-Núñez, A., Verlan, S., Konur, S., Hinze, T., & Gheorghe, M. (2021). Membrane computing models: implementations. Springer.
Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(05), 1440006. https://doi.org/10.1142/s0129065714400061.
Zhang, G., Shang, Z., Verlan, S., Martínez-del Amor, M. A., Yuan, C., Valencia-Cabrera, L., & Pérez-Jiménez, M. J. (2020). An overview of hardware implementation of membrane computing models. ACM Computing Surveys. https://doi.org/10.1145/3402456 (Article No.: 90).
Zhu, M., Yang, Q., Dong, J., Zhang, G., Gou, X., Rong, H., et al. (2021). An adaptive optimization spiking neural P system for binary problems. International Journal of Neural Systems, 31(1), 1–17 (Article No. 2050054).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (61972324); the Sichuan Science and Technology Program (2021YFS0313, 2021YFG0133, 2021YFN0104, 2020YJ0433); the Beijing Advanced Innovation Center for Intelligent Robots and Systems (2019IRS14); the Artificial Intelligence Key Laboratory of Sichuan Province (2019RYJ06).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Theorem 23
\(hSZMat_2INS_1^{0,1}DEL_1^{1, 1} = RE.\)
Proof
From Theorems 6 and 22. \(\square\)
Theorem 24
\(hSZMat_2INS_1^{1,1}DEL_1^{1,0} = RE.\)
Proof
\(A = \{\theta S_1 \# \$ \}\).
(II) For \(r_i: X \rightarrow bY\):
if \(b \in N^{''}\) | if \(b \in T_1\) |
---|---|
\(r_{i1}: [(\lambda , \lambda / r_{i_1}, X), (\#, \lambda / r_i^{1}, \$)]\) | \(r_{i1}^{b}: [(\theta , \lambda / r_{i_1}, X), (\#, \lambda / r_i^{1}, \$)]\) |
\(r_{i2}: [(r_{i_1}, X / \lambda , \lambda ), (\#, \lambda / r_i^{2}, r_i^{1})]\) | \(r_{i2}^{b}: [(r_{i_1}, X / \lambda , \lambda ), (\#, \lambda / r_i^{2}, r_i^{1})]\) |
\(r_{i3}: [(\lambda , \lambda / b, r_{i_1}), (\#, \lambda / r_i^{3}, r_i^{2})]\) | \(r_{i3}^{b}: [(\theta , \lambda / Y, r_{i_1}), (\#, \lambda / r_i^{3}, r_i^{2})]\) |
\(r_{i4}: [(b, \lambda / Y, r_{i_1}), (r_i^{3}, r_i^{2} / \lambda , \lambda )]\) | \(r_{i4}^{b}: [(Y, r_{i_1} / \lambda , \lambda ), (r_i^{3}, r_i^{2} / \lambda , \lambda )]\) |
\(r_{i5}: [ (r_i^{3}, r_i^{1} / \lambda , \lambda )]\) | \(r_{i5}^{b}: [(r_i^{3}, r_i^{1} / \lambda , \lambda ), (\#, r_i^{3} / \lambda , \lambda )]\) |
\(r_{i6}: [(Y, r_{i_1} / \lambda , \lambda ), (\lambda , r_i^{3} / \lambda , \$)]\) |
\(\square\)
Theorem 25
\(hSZMat_2INS_1^{1,1}DEL_1^{0,1} = RE.\)
Proof
From Theorems 6 and 24. \(\square\)
Theorem 26
\(hSZMat_2INS_1^{1,0}DEL_2^{0,0} = RE.\)
Proof
\(A = \{\theta H S_1 E\}\).
(II) For \(r_i: X \rightarrow bY\):
if \(b \in N^{''}\) | if \(b \in T_1\) |
---|---|
\(r_{i1}: [(\lambda , X / \lambda , \lambda ), (E, \lambda / r_i^{1}, \lambda )]\) | \(r_{i1}^{b}: [(\lambda , X / \lambda , \lambda ), (E, \lambda / r_i^{1}, \lambda )]\) |
\(r_{i2}: [(H, \lambda / Y_1^{r_i}, \lambda ), (E, \lambda / \#_{r_i}, \lambda )]\) | \(r_{i2}^{b}: [(H, \lambda / Y_1^{r_i}, \lambda ), (E, \lambda / \#_{r_i}, \lambda )]\) |
\(r_{i3}: [(E, \lambda / \#_{r_i}^{'}, \lambda ), (E, \lambda / r_i^{2}, \lambda )]\) | \(r_{i3}^{b}: [(E, \lambda / \#_{r_i}^{'}, \lambda ), (E, \lambda / r_i^{2}, \lambda )]\) |
\(r_{i4}: [(E, \lambda / r_i^{3}, \lambda ), (\lambda , \#_{r_i}^{'} \#_{r_i} / \lambda , \lambda )]\) | \(r_{i4}^{b}: [(E, \lambda / r_i^{3}, \lambda ), (\lambda , \#_{r_i} \#_{r_i}^{'} / \lambda , \lambda )]\) |
\(r_{i5}: [(H, \lambda / b, \lambda ), (\lambda , r_i^{2} / \lambda , \lambda )]\) | \(r_{i5}^{b}: [(\theta , \lambda / r_i^{'}, \lambda ), (\lambda , r_i^{2} / \lambda , \lambda )]\) |
\(r_{i6}: [(\lambda , H / \lambda , \lambda ), (Y_1^{r_i}, \lambda / Y_2^{r_i}, \lambda )]\) | \(r_{i6}^{b}: [(\lambda , r_i^{'} H / \lambda , \lambda ), (Y_1^{r_i}, \lambda / Y_2^{r_i}, \lambda )]\) |
\(r_{i7}: [(Y_2^{r_i}, \lambda / H, \lambda ), (\lambda , r_i^{3} r_i^{1} / \lambda , \lambda )]\) | \(r_{i7}^{b}: [(Y_2^{r_i}, \lambda / H, \lambda ), (\lambda , r_i^{3} r_i^{1} / \lambda , \lambda )]\) |
\(r_{i8}: [(H, \lambda / Y, \lambda ), (\lambda , Y_1^{r_i}Y_2^{r_i} / \lambda , \lambda )]\) | \(r_{i8}^{b}: [(H, \lambda / Y, \lambda ), (\lambda , Y_1^{r_i}Y_2^{r_i} / \lambda , \lambda )]\) |
\(\square\)
Theorem 27
\(hSZMat_2INS_1^{0,1}DEL_2^{0,0}= RE.\)
Proof
From Theorems 6 and 26. \(\square\)
Theorem 28
\(hSZMat_2INS_2^{0,0}DEL_1^{1,0}= RE.\)
Proof
(II) For \(r_i: X \rightarrow bY\):
if \(b \in N^{''}\) | if \(b \in T_1\) |
---|---|
\(r_{i1}: [(\lambda , \lambda / bY, \lambda ), (Y, X / \lambda , \lambda )]\) | \(r_{i1}^{b}: [(\lambda , \lambda / r_{i_1}Y, \lambda ), (Y, X / \lambda , \lambda )]\) |
\(r_{i2}^{b}: [(\$, r_{i_1} / \lambda , \lambda )]\) |
\(\square\)
Theorem 29
\(hSZMat_2INS_2^{0,0}DEL_1^{0,1} = RE.\)
Proof
Rights and permissions
About this article
Cite this article
Paul, P., Zhang, G., Guo, D. et al. On homomorphic images of the Szilard languages of matrix insertion–deletion systems with matrices of size 2. J Membr Comput 4, 68–86 (2022). https://doi.org/10.1007/s41965-021-00086-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41965-021-00086-y