Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Generating pictures in string representation with P systems: the case of space-filling curves

  • Survey Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

The computing model of P system with its several variants is known to be a very convenient framework for dealing with different kinds of problems. P systems have been constructed for the generation of approximating geometric patterns of space-filling curves, such as the Peano curve, the Hilbert curve and others. We present the state-of-the-art in the generation of space-filling curves, and related curves, with P systems with parallel rewriting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bader, M. (2013). Space-filling Curves - An Introduction with applications in Scientific Computing. Springer, New York: Texts in Computational Science and Engineering.

    MATH  Google Scholar 

  2. Bera, S., Ceterchi, R., Pan, L., & Subramanian, K.G. (2020). Array Representations of Wunderlich Type Space-Filling Curves (submitted)

  3. Ceterchi, R., Mutyam, M., Pǎun, Gh, & Subramanian, K. G. (2003). Array - rewriting P systems. Natural Computing, 2, 229–249.

    Article  MathSciNet  Google Scholar 

  4. Ceterchi, R., Subramanian, K.G., & Venkat, I. (2015). P Systems with parallel rewriting for chain code picture languages. In: Proceedings of 11th Conference on Computability in Europe (CiE), pp. 145–155 .

  5. Ceterchi, R., Nagar, A.K., & Subramanian, K.G. (2018). Approximating polygons for space-filling curves generated with P systems. In: C. Graciani et al. (Eds.): Pérez-Jiménez Festschrift, LNCS 11270, pp. 57–65. https://doi.org/10.1007/978-3-030-00265-7_5

  6. Ceterchi, R., Nagar, A.K., & Subramanian, K.G. (2019). Chain Code P System Generating a Variant of the Peano Space-filling Curve. In: T. Hinze et al. (Eds.): CMC 2018, LNCS 11399, Springer Nature (2019). https://doi.org/10.1007/978-3-030-12797-8_6

  7. Ceterchi R., Nagar A.K., Pan L., & Subramanian K.G. (2019). P Systems Generating Array Representations of Peano Type Space-Filling Curves. Proceedings of the 20th International Conference on Membrane Computing, CMC20, August 5–8, 2019, Curtea de Argeş, Romania (Gh. Păun editor) Bibliostar, Râmnicu Vâlcea 309–324.

  8. Ceterchi, R., & Subramanian, K.G. (2019). P Systems for Generating Pictures in String Representations: The Case of Space-Filling Curves, Proceedings of the 20th International Conference on Membrane Computing, CMC20, August 5–8, Curtea de Argeş, Romania (Gh. Păun editor) Bibliostar, Râmnicu Vâlcea (2019) 63–80.

  9. Ceterchi, R., Zhang, L., Pan, L., Subramanian, K. G., & Zhang, G. (2019). Generating Hilbert Words in Array Representation with P Systems, ACMC2019, November 14–16. China: Xiamen.

    Google Scholar 

  10. Ceterchi, R., Orellana-Martin, D., & Zhang, G. (2020). Division Rules for Tissue P Systems Inspired by Space Filling Curves (to appear in Proceedings ICMC2020).

  11. Dassow, J., Habel, A., & Taubenberger, S. (1996). Chain-code pictures and collages generated by hyperedge replacement. Lecture Notes in Computer Science, 1073, 412–427.

    Article  MathSciNet  Google Scholar 

  12. Dharani, A., Stella Maragatham, R., Nagar, A. K., & Subramanian, K. G. (2018). Chain Code P System for Generation of Approximation Patterns of Sierpiński Curve. IWCIA2018, LNCS 11255 43–52

  13. Drewes, F. (2000). Some remarks on the generative power of collage grammars and chain-code grammars. Lecture Notes in Computer Science, 1764, 1–14.

    Article  MathSciNet  Google Scholar 

  14. Freund, R. (2019). Playing with Derivation Modes, Proceedings of the 20th International Conference on Membrane Computing, CMC20, August 5–8, 2019, Curtea de Argeş, Romania (Gh. Păun editor) Bibliostar, Râmnicu Vâlcea, pp. 109–122.

  15. Freund, R. (2020). How derivation modes and halting conditions may influence the computational power of P systems. Journal of Membrane Computing, 2(1), 14–25.

    Article  MathSciNet  Google Scholar 

  16. Gheorghe, M., Pǎun, Gh, Pérez Jiménez, M. J., & Rozenberg, G. (2013). Research frontiers of membrane computing: Open problems and research topics. International Journal of Foundations of Computer Science, 24(5), 547–624.

    Article  MathSciNet  Google Scholar 

  17. Giammarresi, D., & Restivo, A. (1997). Two-dimensional languages. In G. Rozenberg & A. Salomaa (Eds.), Handbook of Formal Languages (Vol. 3, pp. 215–267). Heidelberg: Springer.

    Chapter  Google Scholar 

  18. Hilbert, D. (1891). Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathematische Annalen, 38, 459–460.

    Article  MathSciNet  Google Scholar 

  19. Maurer, H. A., Rozenberg, G., & Welzl, E. (1982). Using string languages to describe picture languages. Information Control, 54, 155–185.

    Article  MathSciNet  Google Scholar 

  20. Moore, E. H. (1900). On certain crinkly curves. Transactions of the American Mathematical Society, 1, 72–90.

    Article  MathSciNet  Google Scholar 

  21. Peano, G. (1890). Sur une courbe qui remplit toute une aire plane. Mathematische Annalen, 36, 157–160.

    Article  MathSciNet  Google Scholar 

  22. Pǎun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61, 108–143.

    Article  MathSciNet  Google Scholar 

  23. Pǎun, Gh. (2002). Membrane Computing: An Introduction. Springer-Verlag Berlin, Heidelberg.

  24. Salomaa, A. (1973). Formal Languages. London: Academic Press.

    MATH  Google Scholar 

  25. Sagan, H. (1994). Space-Filling Curves. New York: Springer.

    Book  Google Scholar 

  26. Sierpiński, W. (1912). Sur une nouvelle courbe continnue qui remplit toute une aire plane. Bull. Acad. Sci. de Cracovie (Sci. math et nat., Série A) 462–478.

  27. Siromoney, R., & Subramanian, K. G. (1983). Space-filling curves and Infinite graphs. Lecture Notes in Computer Science, 153, 380–391.

    Article  Google Scholar 

  28. Subramanian, K.G., Venkat, I., & Pan, L. (2012). P Systems generating chain code picture languages, Proc. Asian Conf. Membrane Computing, pp. 115–123.

  29. Wunderlich, W. (1973). Über Peano-Kurven. Elemente der Mathematik, 28, 1–10.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

An earlier version of this work was presented at The XX\(^{th}\) Conference on Membrane Computing held in Curtea-de-Argeş, Romania, 5–8 August, 2019, [8]. We are grateful to Rudolf Freund for introducing the notion of derivation modes, and pointing to us on the occasion of this conference the possibility of using only one membrane instead of two.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Ceterchi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceterchi, R., Subramanian, K.G. Generating pictures in string representation with P systems: the case of space-filling curves. J Membr Comput 2, 369–379 (2020). https://doi.org/10.1007/s41965-020-00061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-020-00061-z

Keywords

Navigation