Abstract
The computing model of P system with its several variants is known to be a very convenient framework for dealing with different kinds of problems. P systems have been constructed for the generation of approximating geometric patterns of space-filling curves, such as the Peano curve, the Hilbert curve and others. We present the state-of-the-art in the generation of space-filling curves, and related curves, with P systems with parallel rewriting.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bader, M. (2013). Space-filling Curves - An Introduction with applications in Scientific Computing. Springer, New York: Texts in Computational Science and Engineering.
Bera, S., Ceterchi, R., Pan, L., & Subramanian, K.G. (2020). Array Representations of Wunderlich Type Space-Filling Curves (submitted)
Ceterchi, R., Mutyam, M., Pǎun, Gh, & Subramanian, K. G. (2003). Array - rewriting P systems. Natural Computing, 2, 229–249.
Ceterchi, R., Subramanian, K.G., & Venkat, I. (2015). P Systems with parallel rewriting for chain code picture languages. In: Proceedings of 11th Conference on Computability in Europe (CiE), pp. 145–155 .
Ceterchi, R., Nagar, A.K., & Subramanian, K.G. (2018). Approximating polygons for space-filling curves generated with P systems. In: C. Graciani et al. (Eds.): Pérez-Jiménez Festschrift, LNCS 11270, pp. 57–65. https://doi.org/10.1007/978-3-030-00265-7_5
Ceterchi, R., Nagar, A.K., & Subramanian, K.G. (2019). Chain Code P System Generating a Variant of the Peano Space-filling Curve. In: T. Hinze et al. (Eds.): CMC 2018, LNCS 11399, Springer Nature (2019). https://doi.org/10.1007/978-3-030-12797-8_6
Ceterchi R., Nagar A.K., Pan L., & Subramanian K.G. (2019). P Systems Generating Array Representations of Peano Type Space-Filling Curves. Proceedings of the 20th International Conference on Membrane Computing, CMC20, August 5–8, 2019, Curtea de Argeş, Romania (Gh. Păun editor) Bibliostar, Râmnicu Vâlcea 309–324.
Ceterchi, R., & Subramanian, K.G. (2019). P Systems for Generating Pictures in String Representations: The Case of Space-Filling Curves, Proceedings of the 20th International Conference on Membrane Computing, CMC20, August 5–8, Curtea de Argeş, Romania (Gh. Păun editor) Bibliostar, Râmnicu Vâlcea (2019) 63–80.
Ceterchi, R., Zhang, L., Pan, L., Subramanian, K. G., & Zhang, G. (2019). Generating Hilbert Words in Array Representation with P Systems, ACMC2019, November 14–16. China: Xiamen.
Ceterchi, R., Orellana-Martin, D., & Zhang, G. (2020). Division Rules for Tissue P Systems Inspired by Space Filling Curves (to appear in Proceedings ICMC2020).
Dassow, J., Habel, A., & Taubenberger, S. (1996). Chain-code pictures and collages generated by hyperedge replacement. Lecture Notes in Computer Science, 1073, 412–427.
Dharani, A., Stella Maragatham, R., Nagar, A. K., & Subramanian, K. G. (2018). Chain Code P System for Generation of Approximation Patterns of Sierpiński Curve. IWCIA2018, LNCS 11255 43–52
Drewes, F. (2000). Some remarks on the generative power of collage grammars and chain-code grammars. Lecture Notes in Computer Science, 1764, 1–14.
Freund, R. (2019). Playing with Derivation Modes, Proceedings of the 20th International Conference on Membrane Computing, CMC20, August 5–8, 2019, Curtea de Argeş, Romania (Gh. Păun editor) Bibliostar, Râmnicu Vâlcea, pp. 109–122.
Freund, R. (2020). How derivation modes and halting conditions may influence the computational power of P systems. Journal of Membrane Computing, 2(1), 14–25.
Gheorghe, M., Pǎun, Gh, Pérez Jiménez, M. J., & Rozenberg, G. (2013). Research frontiers of membrane computing: Open problems and research topics. International Journal of Foundations of Computer Science, 24(5), 547–624.
Giammarresi, D., & Restivo, A. (1997). Two-dimensional languages. In G. Rozenberg & A. Salomaa (Eds.), Handbook of Formal Languages (Vol. 3, pp. 215–267). Heidelberg: Springer.
Hilbert, D. (1891). Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathematische Annalen, 38, 459–460.
Maurer, H. A., Rozenberg, G., & Welzl, E. (1982). Using string languages to describe picture languages. Information Control, 54, 155–185.
Moore, E. H. (1900). On certain crinkly curves. Transactions of the American Mathematical Society, 1, 72–90.
Peano, G. (1890). Sur une courbe qui remplit toute une aire plane. Mathematische Annalen, 36, 157–160.
Pǎun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61, 108–143.
Pǎun, Gh. (2002). Membrane Computing: An Introduction. Springer-Verlag Berlin, Heidelberg.
Salomaa, A. (1973). Formal Languages. London: Academic Press.
Sagan, H. (1994). Space-Filling Curves. New York: Springer.
Sierpiński, W. (1912). Sur une nouvelle courbe continnue qui remplit toute une aire plane. Bull. Acad. Sci. de Cracovie (Sci. math et nat., Série A) 462–478.
Siromoney, R., & Subramanian, K. G. (1983). Space-filling curves and Infinite graphs. Lecture Notes in Computer Science, 153, 380–391.
Subramanian, K.G., Venkat, I., & Pan, L. (2012). P Systems generating chain code picture languages, Proc. Asian Conf. Membrane Computing, pp. 115–123.
Wunderlich, W. (1973). Über Peano-Kurven. Elemente der Mathematik, 28, 1–10.
Acknowledgements
An earlier version of this work was presented at The XX\(^{th}\) Conference on Membrane Computing held in Curtea-de-Argeş, Romania, 5–8 August, 2019, [8]. We are grateful to Rudolf Freund for introducing the notion of derivation modes, and pointing to us on the occasion of this conference the possibility of using only one membrane instead of two.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ceterchi, R., Subramanian, K.G. Generating pictures in string representation with P systems: the case of space-filling curves. J Membr Comput 2, 369–379 (2020). https://doi.org/10.1007/s41965-020-00061-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41965-020-00061-z