Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Cait: Analysis Toolkit for Cryogenic Particle Detectors in Python

  • Original Article
  • Published:
Computing and Software for Big Science Aims and scope Submit manuscript

Abstract

Cryogenic solid state detectors are widely used in dark matter and neutrino experiments, and require a sensible raw data analysis. For this purpose, we present Cait, an open source Python package with all essential methods for the analysis of detector modules fully integrable with the Python ecosystem for scientific computing and machine learning. It comes with methods for triggering of events from continuously sampled streams, identification of particle recoils and artifacts in a low signal-to-noise ratio environment, the reconstruction of deposited energies, and the simulation of a variety of typical event types. Furthermore, by connecting Cait with existing machine learning frameworks we introduce novel methods for better automation in data cleaning and background rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request].

References

  1. Goodman MW, Witten E (1985) Detectability of certain dark-matter candidates. Phys Rev D 31:3059–3063

    Article  ADS  Google Scholar 

  2. Akimov D et al (2017) Observation of coherent elastic neutrino-nucleus scattering. Science 357(6356):1123–1126

    Article  ADS  Google Scholar 

  3. Pröbst F et al (1995) Model for cryogenic particle detectors with superconducting phase transition thermometers. J Low Temp Phys 100(1):69–104

    Article  ADS  Google Scholar 

  4. Van Rossum G, Drake FL (2009) Python 3 reference manual. CreateSpace, Scotts Valley

    Google Scholar 

  5. Armengaud E et al (2016) Constraints on low-mass WIMPs from the EDELWEISS-III dark matter search. J Cosmol Astropart Phys 2016(05):019

    Article  Google Scholar 

  6. Arnaud Q et al (2018) First results from the NEWS-G direct dark matter search experiment at the LSM. Astropart Phys 97:54–62

    Article  ADS  Google Scholar 

  7. Coarasa I et al (2021) Machine-learning techniques applied to three-year exposure of ANAIS–112. J Phys: Conf Ser 2156(1):012036

    Google Scholar 

  8. Golovatiuk A et al (2022) Deep Learning for direct Dark Matter search with nuclear emulsions. Comput Phys Commun 275:108312

    Article  Google Scholar 

  9. Khosa CK et al (2020) Convolutional neural networks for direct detection of dark matter. J Phys G: Nucl Particle Phys 47(9):095201

    Article  ADS  Google Scholar 

  10. LUX Collaboration et al (2022) Fast and flexible analysis of direct Dark Matter search data with Machine Learning

  11. Paszke A et al (2019) PyTorch: an imperative style, high-performance deep learning library. In: Wallach H et al (eds) Advances in neural information processing systems, vol 32. Curran Associates, Inc, pp. 8024–8035.

  12. Falcon W et al (2019) PyTorch Lightning. GitHub. Note: https://github.com/PyTorchLightning/pytorch-lightning, 3

  13. Abdelhameed AH et al (2019) First results from the CRESST-III low-mass dark matter program. Phys Rev D 100:102002

    Article  ADS  Google Scholar 

  14. COSINUS Collaboration et al (2021) First measurements of remoTES cryogenic calorimeters: easy-to-fabricate particle detectors for a wide choice of target materials

  15. F. W. et al (2021) Cryogenic Artificial Intelligence Tools - A Python package for the raw data analysis of cryogenic particle detectors with machine learning. https://github.com/fewagner/cait

  16. Python Package Index - PyPI. https://pypi.org/

  17. Wagner F et al (March 2022) fewagner/cait: v1.1.1. https://doi.org/10.5281/zenodo.6359433

  18. Virtanen P et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods 17:261–272

    Article  Google Scholar 

  19. Harris CR et al (2020) Array programming with NumPy. Nature 585(7825):357–362

    Article  ADS  Google Scholar 

  20. Lam SK et al (2015) Numba: A LLVM-based python JIT compiler. In: Proceedings of the second workshop on the LLVM compiler infrastructure in HPC, LLVM ’15, New York. Association for Computing Machinery

  21. McKinney W et al (2010) Data structures for statistical computing in python. In: Proceedings of the 9th python in science conference, vol 445, pp 51–56. Austin

  22. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95

    Article  Google Scholar 

  23. P. T. Inc. Collaborative data science (2015)

  24. Pérez F, Granger BE (2007) IPython: a system for interactive scientific computing. Comput Sci Eng 9(3):21–29

    Article  Google Scholar 

  25. widgets community J (2015) ipywidgets, a GitHub repository. Retrieved from https://github.com/jupyter-widgets/ipywidgets

  26. da Costa-Luis CO (September 2019) tqdm: A fast, Extensible Progress Bar for Python and CLI. https://doi.org/10.5281/zenodo.3435774

  27. Strauss R et al (2017) Gram-scale cryogenic calorimeters for rare-event searches. Phys Rev D 96:022009

    Article  ADS  Google Scholar 

  28. Billard J et al (2022) Direct detection of dark matter—APPEC committee report. Reports Progr Phys 85(5):056201

    Article  ADS  Google Scholar 

  29. Agnese R et al (2017) Projected sensitivity of the SuperCDMS SNOLAB experiment. Phys Rev D 95:082002

    Article  ADS  Google Scholar 

  30. Undagoitia TM, Rauch L (2015) Dark matter direct-detection experiments. J Phys G: Nucl Particle Phys 43(1):013001

    Article  Google Scholar 

  31. The HDF Group. Hierarchical Data Format, version 5, 1997-NNNN. https://www.hdfgroup.org/HDF5/

  32. Collette A (2013) Python and HDF5. O’Reilly

  33. Alduino C et al (2017) Low energy analysis techniques for CUORE. Eur Phys J C 77(12):857

    Article  ADS  Google Scholar 

  34. Mancuso M et al (2019) A method to define the energy threshold depending on noise level for rare event searches. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 940:492–496

    Article  ADS  Google Scholar 

  35. Carrettoni M, Cremonesi O (2010) Generation of noise time series with arbitrary power spectrum. Comput Phys Commun 181(12):1982–1985

    Article  ADS  Google Scholar 

  36. Lecun Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  37. Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: Bengio Y, LeCun Y (eds) ICLR (Poster)

  38. Kluyver T et al (2016) Jupyter Notebooks—a publishing format for reproducible computational workflows. In: Loizides F, Schmidt B (eds) Positioning and power in academic publishing: players, agents and agendas. IOS Press, pp 87–90

  39. F. W. et al (2021) Cait (Cryogenic Artificial Intelligence Tools) - Documentation. https://cait.readthedocs.io/

Download references

Acknowledgements

We thank the CRESST and COSINUS collaborations for many discussions, especially Franz Pröbst, Martin Stahlberg, Nahuel Ferreiro Iachellini, Daniel Schmiedmayer and Christian Strandhagen. We are grateful for all early users, among them especially Rituparna Maji, who provided crucial feedback to the project. The computational results presented were obtained using the Vienna CLIP cluster. FW was supported by the Austrian Research Promotion Agency (FFG), project ML4CPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Wagner.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daniel Bartolot, Damir Rizvanovic, Florian Reindl, Jochen Schieck, and Wolfgang Waltenberger are contributing authors.

Appendix A: Code to simulate a mock data stream

Appendix A: Code to simulate a mock data stream

figure j

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, F., Bartolot, D., Rizvanovic, D. et al. Cait: Analysis Toolkit for Cryogenic Particle Detectors in Python. Comput Softw Big Sci 6, 19 (2022). https://doi.org/10.1007/s41781-022-00092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41781-022-00092-4

Keywords

Navigation