Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Geospatial Operations of Discrete Global Grid Systems—a Comparison with Traditional GIS

  • Published:
Journal of Geovisualization and Spatial Analysis Aims and scope Submit manuscript

Abstract

As the foundation of the next-generation Digital Earth, Discrete Global Grid Systems (DGGS) have demonstrated both theoretical and practical development, with a variety of state-of-the-art implementations proposed. These emerging DGGS platforms or libraries support preliminary operations such as quantization, cell-level navigation, and conversion between cell addresses and geographical coordinates, while leaving the other more complicated functions unexplored. This paper discusses the functional operations in a DGGS environment, including the essential operations defined by the Open Geospatial Consortium (OGC) Abstract Specification, and the extended operations potentially supported by DGGS. The extended operations are discussed in comparison to the traditional GIS, from the aspects of database techniques, data pre-processing and manipulation, spatial analysis and data interpretation, data computation, and data visualization. It was found that with the OGC-required operations and pre-processing operations as the baseline of development, some function algorithms can facilitate the algorithm development of other analytical functions. Several future research directions regarding the data modeling uncertainties, extended analytic algorithm development, and database and computation technologies are presented. This paper provides a comparison between DGGS and traditional GIS operations and can serve as a reference for future DGGS operation development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams B (2017) Wāhi, a discrete global grid gazetteer built using linked open data. Int J Digit Earth 10:490–503

    Google Scholar 

  • Alderson T, Purss M, Du X, Mahdavi-Amiri A, Samavati F (2020) Digital earth platforms. In: Guo H, Goodchild M, Annoni A (eds) Manual of digital earth. Springer, Singapore, pp 25–54

    Google Scholar 

  • Bai J, Zhao X, Chen J (2005) Indexing of the discrete global grid using linear quadztree. In: Proceedings of ISPRS workshop on service and application of spatial data infrastructure, Hangzhou, China. pp 267–270

  • Baumann P, Misev D, Merticariu V, Huu BP (2018) Datacubes: towards space/time analysis-ready data. In: Doellner J, Jobst M, Schmitz P (eds) Service oriented mapping - changing paradigm in map production and geoinformation management. Springer, Heidelberg, pp 269–299

  • Bernhardsen T (2002) Geographic information systems: an introduction. John Wiley & Sons, New York

    Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Statist Soc B 36:192–225

    Google Scholar 

  • Bondaruk B, Roberts SA, Robertson C (2020) Assessing the state of the art in discrete global grid systems: OGC criteria and present functionality. Geomatica 74:9–30

    Google Scholar 

  • Bowater D, Stefanakis E (2019) An open-source web service for creating quadrilateral grids based on the rHEALPix discrete global grid system. Int J Digit Earth 13:1055–1071

    Google Scholar 

  • Bowater D, Wachowicz M (2020) Modelling offset regions around static and mobile locations on a discrete global grid system: an IoT case study. ISPRS Int J Geo-Inf 9:335

    Google Scholar 

  • Bradley ES, Roberts DA, Dennison PE, Green RO, Eastwood M, Lundeen SR, McCubbin IB, Leifer I (2011) Google Earth and Google Fusion Tables in support of time-critical collaboration: mapping the deepwater horizon oil spill with the AVIRIS airborne spectrometer. Earth Sci Inform 4:169–179

  • Burrough PA, McDonell RA (1998) Principles of geographical information systems. Oxford University Press, New York

    Google Scholar 

  • Carfora MF (2007) Interpolation on spherical geodesic grids: a comparative study. J Comput Appl Math 210:99–105

    Google Scholar 

  • Cesium (2019) Cesium. https://cesium.com/index.html. Accessed 10 Aug 2020

  • Chen D, Lu M, Zhou Q, Xiao J, Ru Y, Wei Y, Wu W (2019) Comparison of two synergy approaches for hybrid cropland mapping. Remote Sens 11:213

    Google Scholar 

  • Cohen A, Dyn N, Kaber SM, Postel M (2000) Multiresolution schemes on triangles for scalar conservation laws. J Comput Phys 161:264–286

    Google Scholar 

  • National Research Council (2003) IT roadmap to a geospatial future. The National Academies Press, Washington DC

  • Danielson JJ, Gesch DB (2011) Global multi-resolution terrain elevation data 2010 (GMTED2010). Center EROaSE, U.S. Geological Survey, Reston, Virginia, USA. Open-File Report 2011–1073

  • de Sousa LM, Leitão JP (2018) HexASCII: a file format for cartographical hexagonal rasters. Trans GIS 22:217–232

    Google Scholar 

  • De-Floriani L, Puppo E (1992) A hierarchical triangle-based model for terrain description. In: Frank AU, Campari I, Formentini U (eds) Theories and methods of spatio-temporal reasoning in geographic space, lecture notes in computer science, vol 639. Springer, New York, pp 236–251

    Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Google Scholar 

  • Dutton G (1984) Geodesic modelling of planetary relief. Cartographica 21:188–207

    Google Scholar 

  • Dutton G (1988) Computational aspects of a quaternary triangular mesh. In: Dutton GH (ed) A hierarchical coordinate system for geoprocessing and cartography. Springer-Verlag, Berlin, pp 41–70

    Google Scholar 

  • Dutton G (1989) Modelling locational uncertainty via hierarchical tessellation. In: Goodchild MF, Gopal S (eds) Accuracy of spatial databases. Taylor &Francis, e-Library, pp 81–91

  • Egenhofer MJ, Herring JR (1990) A mathematical framework for the definition of topological relations. In: Proceedings of the fourth international symposium on spatial data handing. pp 803–813

  • Fernique P, Allen MG, Boch T, Oberto A, Pineau FX, Durand D, Bot C, Cambrésy L, Derriere S, Genova F, Bonnarel F (2015) Hierarchical progressive surveys — multi-resolution HEALPix data structures for astronomical images, catalogues, and 3-dimensional data cubes. Astron Astrophys 578:A114

    Google Scholar 

  • Fischer MM (2006) GIS and network analysis. In: Fischer MM (ed) Spatial analysis and geocomputation. Springer, Berlin-Heidelberg, pp 43–60

    Google Scholar 

  • Gardiner B, Coleman S, Scotney B (2011) Comparing hexagonal image resampling techniques with respect to feature extraction. Paper presented at the 14th International Machine Vision and Image Processing Conference, Limerick, Ireland

  • GEE (2017) Google Earth Enterprise. https://www.opengee.org/. Accessed 10 Aug 2020

  • GGS (2019) Global Grid Systems. https://www.globalgridsystems.com. Accessed 20 Nov 2019

  • Gibb R (2016) The rHEALPix discrete global grid system. Paper presented at the IOP Conference Series: Earth and Environmental Science, 9th Symposium of the International Society for Digital Earth (ISDE), Halifax, Canada

  • Gibb R, Raichev A, Speth M (2013) The rHEALPix Discrete Global Grid System. https://pdfs.semanticscholar.org/5510/dc6e15d1fa3ab6edec4528239891874bc730.pdf. Accessed 15 Oct 2019

  • Gong P, Wang J, Yu L, Zhao Y, Zhao Y, Liang L, Niu Z, Huang X, Fu H, Liu S, Li C, Li X, Fu W, Liu C, Xu Y, Wang X, Cheng Q, Hu L, Yao W, Zhang H, Zhu P, Zhao Z, Zhang H, Zheng Y, Ji L, Zhang Y, Chen H, Yan A, Guo J, Yu L, Wang L, Liu X, Shi T, Zhu M, Chen Y, Yang G, Tang P, Xu B, Giri C, Clinton N, Zhu Z, Chen J, Chen J (2013) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int J Remote Sens 34:2607–2654

    Google Scholar 

  • Goodchild M (1994) Geographical grid models for environmental monitoring and analysis across the globe. In: Proceedings of GIS/LIS 1994 Conference, Phoenix, Arizona

  • Goodchild MF (2000) Discrete global grids for digital earth. Paper presented at the International Conference on Discrete Global Grids, Santa Barbara

  • Goodchild MF (2018) Reimagining the history of GIS. Ann GIS 24:1–8

    Google Scholar 

  • Goodchild M (2019) Preface. Cartographica 54:1–3

    Google Scholar 

  • Goodchild MF, Yang S (1989) A hierarchical spatial data structure for global geographic information systems. Graph Models Image Process 54:31–44

    Google Scholar 

  • Goodchild MF et al (2012) Next-generation digital earth. In: Proceedings of the National Academy of Sciences, Berkeley, CA, USA, vol 28. pp 11088–11094

  • Gorski KM, Hivon E, Banday AJ, Wandelt BD, Hansen FK, Reinecke M, Bartelmann M (2005) HEALPix — a framework for high resolution discretization, and fast analysis of data distributed on the sphere. Astrophys J 622:759–779

    Google Scholar 

  • Hall J, Wecker L, Ulmer B, Samavati F (2020) Disdyakis triacontahedron DGGS. ISPRS Int J Geo-Inf 9:315

    Google Scholar 

  • Hancock GR (2005) The use of digital elevation models in the identification and characterization of catchments over different grid scales. Hydrol Process 19:1727–1749

    Google Scholar 

  • Hengl T, Evans IS (2009) Mathematical and digital models of the land surface. In: Geomorphometry-concepts, software, applications. Elsevier, Hungary, pp 31–63

    Google Scholar 

  • Hojati M, Robertson C (2020) Integrating cellular automata and discrete global grid systems: a case study into wildfire modelling. AGILE-GISS 1:1–23

    Google Scholar 

  • Jarihani AA, Callow JN, McVicar TR, Van Niel TG, Larsen JR (2015) Satellite-derived Digital Elevation Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. J Hydrol 524:489–506

  • Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sensing 54:1593–1600

    Google Scholar 

  • JPL (2018) HEALPix. https://healpix.sourceforge.io/index.php. Accessed 20 Nov 2019

  • Kang X, Li J, Fan X (2018) Spatial-temporal visualization and analysis of earth data under Cesium Digital Earth Engine. In: Proceedings of the 2018 2nd International Conference on Big Data and Internet of Things, pp 29-32

  • Keysers JH (2015) Digital globe review 2015. The Australia and New Zealand Cooperative Research Centre for Spatial Information, Canberra, Australia

  • Kiester AR, Sahr K (2008) Planar and spherical hierarchical, multi-resolution cellular automata. Comput Environ Urban 32:204–213

    Google Scholar 

  • Kimerling AJ, Sahr K, White D, Song L (1999) Comparing geometrical properties of global grids. CaGIS 26:271–288

    Google Scholar 

  • LCR (2017) SCENZGrid/SCENZ-GRID. https://confluence.csiro.au/pages/viewpage.action?pageId=436899507. Accessed 10 Mar 2020

  • Leaflet (2019) Leaflet: an open-source JavaScript library for mobile-friendly interactive maps. https://leafletjs.com/. Accessed 10 Mar 2020

  • Li M, Stefanakis E (in press) Geo-feature modeling uncertainties in discrete global grids: a case study of downtown Calgary, Canada. Geomatica

  • Liao C, Tesfa T, Duan Z, Leung LR (2020) Watershed delineation on a hexagonal mesh grid. Environ Model Softw 128:104702

    Google Scholar 

  • Lu M, Wu W, You L, Chen D, Zhang L, Yang P, Tang H (2017) A synergy cropland of China by fusing multiple existing maps and statistics. Sensors 17:1613

    Google Scholar 

  • Mahdavi-Amiri A, Bhojani F, Samavati F (2013) One-to-two digital earth. In: Bebis G et al (eds) Advances in visual computing. ISVC 2013, Lecture notes in computer science, vol, vol 8034. Springer, Berlin Heidelberg, pp 681–692

    Google Scholar 

  • Mahdavi-Amiri A, Alderson T, Samavati F (2015a) A survey of digital earth. Comput Graph 53:95–117

    Google Scholar 

  • Mahdavi-Amiri A, Samavati F, Peterson P (2015b) Categorization and conversions for indexing methods of discrete global grid systems. ISPRS Int J Geo-Inf 4:320–336

    Google Scholar 

  • Mahdavi-Amiri A, Alderson T, Samavati F (2016) Data management possibilities for aperture 3 hexagonal discrete global grid systems. https://prism.ucalgary.ca/bitstream/handle/1880/51524/2016-1087-06.pdf?sequence=1&isAllowed=y. Accessed 5 Nov 2019

  • Mahdavi-Amiri A, Alderson T, Samavati F (2018) Geospatial data organization methods with emphasis on aperture 3 hexagonal discrete global grid systems. Cartographica 54:30–50

    Google Scholar 

  • Meaden GJ, Chi TD (1996) The functioning of a GIS. http://www.fao.org/3/W0615E/W0615E06.htm#ch6. Accessed 5 Mar 2020

  • Melo FJS, Martins B (2015) Geocoding textual documents through a hierarchy of linear classifiers. Paper presented at the Portuguese Conference on Artificial Intelligence, Portugal

  • Mertes CM, Schneider A, Sulla-Menashe D, Tatem AJ, Tan B (2015) Detecting change in urban areas at continental scales with MODIS data. Remote Sens Environ 158:331–347

    Google Scholar 

  • Mocnik F-B (2018) A novel identifier scheme for the ISEA aperture 3 hexagon discrete global grid system. CaGIS 46:277–291

    Google Scholar 

  • Mohamed-Ghouse ZS, Desha C, Perez-Mora L (2020) Digital earth in Australia. In: Guo H, Goodchild M, Annoni A (eds) Manual of digital earth. Springer Open, pp 683–711

  • Mukherjee S, Bhardwaj A, Mukhopadhyay A, Garg RD, Hazra S (2015) Accuracy of Cartosat-1 DEM and its derived attribute at multiple scale representation. Earth Syst Sci Data 124:487–495

  • NASA (2018) NASA WorldWind. https://worldwind.arc.nasa.gov/. Accessed 10 Aug 2020

  • Nativi S, Domenico B (2009) Enabling interoperability for digital earth: earth science coverage access services. Int J Digit Earth 2:79–104

    Google Scholar 

  • OGC (2017) Topic 21: discrete global grid system abstract specification. http://www.opengis.net/doc/AS/dggs/1.0. Accessed 15 Nov 2019

  • OpenEAGGR (2017) Open Equal Area Global GRid. Riskaware Ltd. https://github.com/riskaware-ltd/open-eaggr. Accessed 26 Nov 2019

  • Pajarola R, Gobbetti E (2007) Survey of semi-regular multiresolution models for interactive terrain rendering. Vis Comput 23:583–605

    Google Scholar 

  • Peterson P (2016) Discrete global grid systems. In: Richardson D, Castree N, Goodchild MF, Kobayashi A, Liu W, Marston RA (eds) The international encyclopedia of geography. John Wiley & Sons Ltd., Chichester, UK, pp 1–10

    Google Scholar 

  • Peterson P, Shatz I (2019) An application development framework for Open Geospatial Consortium discrete global grid system standard. In: IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, Calgary, Canada

  • Peucker TK, Fowler RJ, Little JJ, Mark DM (1978) The triangulated irregular network. In: Proceedings of Digital Terrain Models Symposium, Fallschurch, Virginia, vol 2, pp 96–103

  • Pirotti F, Brovelli MA, Prestifilippo G, Zamboni G, Kilsedar CE, Piragnolo M, Hogan P (2017) An open source virtual globe rendering engine for 3D applications: NASA World Wind. Open Geospat Data Softw Stand 2:1–14

    Google Scholar 

  • Purss M, Peterson P, Strobl P, Dow C, Sabeur Z, Gibb R, Ben J (2019) Datacubes: a discrete global grid systems perspective. Cartographica 54:63–71

    Google Scholar 

  • PYXIS (2008) PYXIS public wiki. http://www.pyxisinnovation.com/pyxwiki/index.php?title=Introduction. Accessed 1 Mar 2020

  • Renka RJ (1997) Algorithm 773: SSRFPACK: interpolation of scattered data on the surface of a sphere with a surface under tension. ACM Trans Math Software 23:435–442

    Google Scholar 

  • Robertson C, Chaudhuri C, Hojati M, Roberts SA (2020) An integrated environmental analytics system (IDEAS) based on a DGGS. ISPRS J Photogramm Remote Sens 162:214–228

    Google Scholar 

  • Sahr K (2008) Location coding on icosahedral aperture 3 hexagon discrete global grids. CaGIS 32:174–187

    Google Scholar 

  • Sahr K (2019) Central place indexing: hierarchical linear indexing systems for mixed-aperture hexagonal discrete global grid systems. Cartographica 54:16–29

    Google Scholar 

  • Sahr K (2020) DGGRID version 7.05. https://github.com/sahrk/DGGRID. Accessed 12 Mar 2020

  • Sahr K, White D, Kimerling AJ (2003) Geodesic discrete global grid systems. CaGIS 30:121–134

    Google Scholar 

  • Sahr K, Dumas M, Choudhuri N (2015) The PlanetRisk discrete global grid system. https://webpages.sou.edu/~sahrk/docs/PlanetRiskDGGS.pdf. Accessed 12 Nov 2019

  • Shannon CE (1949) Communication in the presence of noise. In: Proceedings of the IRE, vol 1, pp 10–21

  • Song L, Kimerling AJ, Sahr K (2002) Developing an equal area global grid by small circle subdivision. In: Goodchild MF, Kimerling AJ (eds) Discrete global grids. National Center for Geographic Information & Analysis, Santa Barbara, pp 2–44

    Google Scholar 

  • Stefanakis E (2016) MR-V: line simplification through mnemonic rasterization. Geomatica 70:187–193

    Google Scholar 

  • Stefanakis E, Sellis T (1998) Enhancing operations with spatial access methods in a database management system for GIS. CaGIS 25:16–32

    Google Scholar 

  • Stonebraker M, Moore D (1996) Object-relational DBMS-the next wave. Informix Software, Menlo Park

    Google Scholar 

  • Stough T, Braverman A, Cressie N, Kang E, Michalak AM, Nguyen H, Sahr K (2014) Visualizing massive spatial datasets using multiresolution global grids. Australia NIfASR, University of Wollongong, Wollongong, Australia. Working Paper 05–14

  • Stough T, Cressie N, Kang EL, Michalak AM, Sahr K (2020) Spatial analysis and visualization of global data on multi-resolution hexagonal grids. Jpn J Stat Data Sci 3:107–128

  • Tobler W, Chen Z (1986) A quadtree for global information storage. Geogr Anal 18:360–371

    Google Scholar 

  • Tomlin CD (1994) Map algebra: one perspective. Landsc Urban Plan 30:3–12

    Google Scholar 

  • Tong X, Ben J, Liu Y, Zhang Y (2013) Modelling and expression of vector data in the hexagonal discrete global grid system. Int Arch Photogramm Remote Sens Spat Inf Sci XL-4(W2):15–25

    Google Scholar 

  • Tong X, Cheng C, Wang R, Ding L, Zhang Y, Lai G, Wang L, Chen B (2019) An efficient integer coding index algorithm for multi-scale time information management. Data Knowl Eng 119:123–138

    Google Scholar 

  • Uber (2017) H3: a hexagonal hierarchical geospatial indexing system. https://github.com/uber/h3. Accessed 25 Nov 2019

  • Uher V, Gajdoš P, Snášel V, Lai Y-C, Radecký M (2019) Hierarchical hexagonal clustering and indexing. Symmetry 11:731

    Google Scholar 

  • Ulmer B, Hall J, Samavati F (2020) General method for extending discrete global grid systems to three dimensions. ISPRS Int J Geo-Inf 9:233

    Google Scholar 

  • Wang L, Ai T, Shen Y, Li J (2020) The isotropic organization of DEM structure and extraction of valley lines using hexagonal grid. Trans GIS 24:483–507

    Google Scholar 

  • Weiss K, De Floriani L (2011) Simplex and diamond hierarchies: models and applications. Comput Graph Forum 30:2127–2155

    Google Scholar 

  • White D (2000) Global grids from recursive diamond subdivisions of the surface of an octahedron or icosahedron. Environ Monit Assess 64:93–103

    Google Scholar 

  • White D, Kiester AR (2008) Topology matters: network topology affects outcomes from community ecology neutral models. CaGIS 32:165–171

    Google Scholar 

  • White D, Kimerling AJ, Overton WS (1992) Cartographic and geometric components of a global sampling desigh for environmental monitoring. CaGIS 19:5–22

    Google Scholar 

  • Yao X, Li G, Xia J, Ben J, Cao Q, Zhao L, Ma Y, Zhang L, Zhu D (2019) Enabling the big earth observation data via cloud computing and DGGS: opportunities and challenges. Remote Sens 12:62

    Google Scholar 

  • Zhou L, Lian W, Zhang Y, Lin B (2020) A topology preserving gridding method for vector features in discrete global grid systems. ISPRS Int J Geo-Inf 9:168

    Google Scholar 

Download references

Funding

This research has been funded by the Canadian Natural Sciences and Engineering Research Council (NSERC) Discovery Grant program entitled HALOS: Mapping Linear Features on Modern Geospatial Reference Frameworks (2019-2024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingke Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Stefanakis, E. Geospatial Operations of Discrete Global Grid Systems—a Comparison with Traditional GIS. J geovis spat anal 4, 26 (2020). https://doi.org/10.1007/s41651-020-00066-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41651-020-00066-3

Keywords

Navigation