Abstract
In this paper, we consider topological featurizations of data defined over simplicial complexes, like images and labeled graphs, obtained by convolving this data with various filters before computing persistence. Viewing a convolution filter as a local motif, the persistence diagram of the resulting convolution describes the way the motif is distributed across the simplicial complex. This pipeline, which we call convolutional persistence, extends the capacity of topology to observe patterns in such data. Moreover, we prove that (generically speaking) for any two labeled complexes one can find some filter for which they produce different persistence diagrams, so that the collection of all possible convolutional persistence diagrams is an injective invariant. This is proven by showing convolutional persistence to be a special case of another topological invariant, the Persistent Homology Transform. Other advantages of convolutional persistence are improved stability, greater flexibility for data-dependent vectorizations, and reduced computational complexity for certain data types. Additionally, we have a suite of experiments showing that convolutions greatly improve the predictive power of persistence on a host of classification tasks, even if one uses random filters and vectorizes the resulting diagrams by recording only their total persistences.
Similar content being viewed by others
Notes
The main theorem of (Cohen-Steiner et al. 2007) is much more general, applying to tame functions on triangulable spaces, conditions which are automatically satisfied in the simplicial setting.
The symbol \(\odot \) refers to the Hadamard product, which performs componentwise multiplication between vectors.
See (Hewitt and Ross 2012), Theorem 20.18 on page 296, for a proof of Young’s inequality for locally compact groups, which in particular includes \(\mathbb {Z}^d\).
References
Acharya, S., Pant, AK., Gyawali, PK.: Deep learning based large scale handwritten devanagari character recognition. In: 2015 9th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), pp. 1–6 IEEE (2015)
Adams, H., Emerson, T., Kirby, M., et al.: Persistence images: a stable vector representation of persistent homology. J Mach Learn Res 18, 1–35 (2017)
Alpaydin, E., Kaynak, C.: Optical Recognition of Handwritten Digits Data Set. UCI Machine Learning Repository (1998)
Aukerman, A., Carrière, M., Chen, C., et al.: Persistent homology based characterization of the breast cancer immune microenvironment: a feasibility study. In: 36th International Symposium on Computational Geometry (SoCG) (2020)
Belton, RL., Fasy, BT., Mertz, R., et al.: Learning Simplicial Complexes from Persistence Diagrams (2018). arXiv preprint arXiv:1805.10716
Belton, R.L., Fasy, B.T., Mertz, R., et al.: Reconstructing embedded graphs from persistence diagrams. Comput. Geom. 90(101), 658 (2020)
Bendich, P., Bubenik, P., Wagner, A.: Stabilizing the unstable output of persistent homology computations. J. Appl. Comput. Topol. 4(2), 309–338 (2020)
Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129(3), 445–470 (1997)
Bleile, B., Garin, A., Heiss, T., et al.: The Persistent Homology of Dual Digital Image Constructions (2021). arXiv preprint arXiv:2102.11397
Botnan, MB., Lesnick, M.: An Introduction to Multiparameter Persistence (2022). arXiv preprint arXiv:2203.14289
Bubenik, P., Wagner, A.: Embeddings of persistence diagrams into Hilbert spaces. J. Appl. Comput. Topol. 4(3), 339–351 (2020)
Bubenik, P., et al.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)
Buchet, M., Chazal, F., Dey, TK., et al.: Topological Analysis of Scalar Fields with Outliers (2014). arXiv preprint arXiv:1412.1680
Calcina, S.S., Gameiro, M.: Parameter estimation in systems exhibiting spatially complex solutions via persistent homology and machine learning. Math. Comput. Simul. 185, 719–732 (2021)
Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)
Carlsson, G., Ishkhanov, T., De Silva, V., et al.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008)
Carrière, M., Oudot, SY., Ovsjanikov, M.: Stable topological signatures for points on 3D shapes. In: Computer graphics forum, pp. 1–12. Wiley Online Library (2015)
Carriere, M., Chazal, F., Glisse, M., et al.: Optimizing persistent homology based functions. In: International Conference on Machine L0earning, pp. 1294–1303. PMLR (2021)
Chung, Y.M., Day, S.: Topological fidelity and image thresholding: a persistent homology approach. J. Math. Imaging Vis. 60(7), 1167–1179 (2018)
Chung, Y.M., Day, S., Hu, C.S.: A multi-parameter persistence framework for mathematical morphology. Sci. Rep. 12(1), 1–25 (2022)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)
Crawford, L., Monod, A., Chen, A.X., et al.: Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. J. Am. Stat. Assoc. 115(531), 1139–1150 (2020)
Cuerno, R., Barabási, A.L.: Dynamic scaling of ion-sputtered surfaces. Phys. Rev. Lett. 74(23), 4746 (1995)
Curry, J.: The fiber of the persistence map for functions on the interval. J. Appl. Comput. Topol. 2(3), 301–321 (2018)
Curry, J., Mukherjee, S., Turner, K.: How Many Directions Determine a Shape and Other Sufficiency Results for Two Topological Transforms (2018). arXiv preprint arXiv:1805.09782
Deng, L.: The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)
Di Fabio, B., Ferri, M.: Comparing persistence diagrams through complex vectors. In: International Conference on Image Analysis and Processing, pp. 294–305. Springer (2015)
Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction (2010)
Fasy, BT., Micka, S., Millman, DL., et al.: Persistence diagrams for efficient simplicial complex reconstruction (2019). arXiv preprint arXiv:1912.12759 1:5
Gabrielsson, RB., Nelson, BJ., Dwaraknath, A., et al.: A topology layer for machine learning. In: International Conference on Artificial Intelligence and Statistics, pp. 1553–1563. PMLR (2020)
Gameiro, M., Hiraoka, Y., Obayashi, I.: Continuation of point clouds via persistence diagrams. Physica D 334, 118–132 (2016)
Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)
Ghrist, R., Levanger, R., Mai, H.: Persistent homology and Euler integral transforms. J. Appl. Comput. Topol. 2(1), 55–60 (2018)
Giunti, B., Houry, G., Kerber, M.: Average Complexity of Matrix Reduction for Clique Filtrations (2021). arXiv preprint arXiv:2111.02125
Golovin, A.A., Davis, S.H.: Effect of anisotropy on morphological instability in the freezing of a hypercooled melt. Physica D 116(3–4), 363–391 (1998)
Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis: Volume I Structure of Topological Groups Integration Theory Group Representations, vol. 115. Springer Science & Business Media, Berlin (2012)
Hiraoka, Y., Nakamura, T., Hirata, A., et al.: Hierarchical structures of amorphous solids characterized by persistent homology. Proc. Natl. Acad. Sci. 113(26), 7035–7040 (2016)
Hu, X., Li, F., Samaras, D., et al.: Topology-preserving deep image segmentation. Adv. Neural Inf. Process. Syst. 32 (2019)
Jiang, Q., Kurtek, S., Needham, T.: The weighted Euler curve transform for shape and image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 844–845 (2020)
Kaczynski, T., Mischaikow, K.M., Mrozek, M.: Computational Homology, vol. 3. Springer, Berlin (2004)
Khramtsova, E., Zuccon, G., Wang, X., et al.: Rethinking Persistent Homology for Visual Recognition (2022). arXiv e-prints arXiv: 2207.04220
Kim, K., Kim, J., Zaheer, M., et al.: PLLay: efficient topological layer based on persistent landscapes. Adv. Neural Inf. Process. Syst. 33, 15965–15977 (2020)
Kipf, TN., Welling, M.: Semi-Supervised Classification with Graph Convolutional Networks (2016). arXiv preprint arXiv:1609.02907
Lacombe, T., Cuturi, M., Oudot, S.: Large scale computation of means and clusters for persistence diagrams using optimal transport. Adv. Neural Inf. Process. Syst. 31 (2018)
Leygonie, J., Henselman-Petrusek, G.: Algorithmic Reconstruction of the Fiber of Persistent Homology on Cell Complexes (2021). arXiv preprint arXiv:2110.14676
Leygonie, J., Tillmann, U.: The fiber of persistent homology for simplicial complexes. J. Pure Appl. Algebra 266, 107099 (2022)
Lindenstrauss, W.J.J.: Extensions of Lipschitz maps into a Hilbert space. Contemp. Math. 26(189–206), 2 (1984)
Maria, C., Oudot, S., Solomon, E.: Intrinsic topological transforms via the distance kernel embedding (2019). arXiv preprint arXiv:1912.02225
Milosavljević, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, pp. 216–225 (2011)
Monod, A., Kalisnik, S., Patino-Galindo, J.Á., et al.: Tropical sufficient statistics for persistent homology. SIAM J. Appl. Algebra Geom. 3(2), 337–371 (2019)
Motta, F.C., Shipman, P.D., Bradley, R.M.: Highly ordered nanoscale surface ripples produced by ion bombardment of binary compounds. J. Phys. D Appl. Phys. 45(12), 122001 (2012)
Nazarpour, K., Chen, M.: Handwritten Chinese Numbers (2017). https://doi.org/10.17634/137930-3. https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831
Otter, N., Porter, M.A., Tillmann, U., et al.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6, 1–38 (2017)
Oudot, S., Solomon, E.: Barcode Embeddings for Metric Graphs (2017). arXiv preprint arXiv:1712.03630
Oudot, S., Solomon, E.: Inverse problems in topological persistence. In: Topological Data Analysis, pp. 405–433. Springer (2020)
Oudot, S.Y.: Persistence Theory: From Quiver Representations to Data Analysis, vol. 209. American Mathematical Society Providence, Providence (2015)
Oudot, S.Y.: Persistence Theory: From Quiver Representations to Data Analysis, vol. 209. American Mathematical Society, Providence (2017)
Pham, K., Le, K., Ho, N., et al.: On unbalanced optimal transport: an analysis of Sinkhorn algorithm. In: International Conference on Machine Learning, pp. 7673–7682. PMLR (2020)
Poulenard, A., Skraba, P., Ovsjanikov, M.: Topological function optimization for continuous shape matching. In: Computer Graphics Forum, pp. 13–25. Wiley Online Library (2018)
Russakovsky, O., Deng, J., Su, H., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Skraba, P., Turner, K.: Wasserstein Stability for Persistence Diagrams (2020). arXiv preprint arXiv:2006.16824
Solomon, E., Wagner, A., Bendich, P.: From Geometry to Topology: Inverse Theorems for Distributed Persistence (2021a). arXiv preprint arXiv:2101.12288
Solomon, E., Wagner, A., Bendich, P.: From geometry to topology: inverse theorems for distributed persistence. In: Goaoc, X., Kerber, M. (eds.) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol. 224, pp 61:1–61:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.SoCG.2022.61, https://drops.dagstuhl.de/opus/volltexte/2022/16069
Solomon, Y., Wagner, A., Bendich, P.: A fast and robust method for global topological functional optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp. 109–117 (2021b)
Suzuki, A., Miyazawa, M., Minto, J.M., et al.: Flow estimation solely from image data through persistent homology analysis. Sci. Rep. 11(1), 1–13 (2021)
Tauzin, G., Lupo, U., Tunstall, L., et al.: giotto-tda: a topological data analysis toolkit for machine learning and data exploration. J. Mach. Learn. Res. 22(39), 1–6 (2021)
Turner, K., Mukherjee, S., Boyer, D.M.: Persistent homology transform for modeling shapes and surfaces. Inf Inference A J. IMA 3(4), 310–344 (2014)
Villain, J.: Continuum models of crystal growth from atomic beams with and without desorption. J. Phys. I 1(1), 19–42 (1991)
Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Society, Providence (2021)
Wagner, A.: Nonembeddability of persistence diagrams with p> 2 Wasserstein metric. Proc. Am. Math. Soc. 149(6), 2673–2677 (2021)
Wolf, D.E.: Kinetic roughening of vicinal surfaces. Phys. Rev. Lett. 67(13), 1783 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The authors were partially supported by the Air Force Office of Scientific Research under the grant “Geometry and Topology for Data Analysis and Fusion”, AFOSR FA9550-18-1-0266. They would also like to extend their thanks to Alexander Wagner, for helpful conversations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Solomon, Y.E., Bendich, P. Convolutional persistence transforms. J Appl. and Comput. Topology 8, 1981–2013 (2024). https://doi.org/10.1007/s41468-024-00164-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41468-024-00164-x