Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Study of primordial deuterium abundance in Big Bang nucleosynthesis

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Big Bang nucleosynthesis (BBN) theory predicts the primordial abundances of the light elements \(^2\)H (referred to as deuterium, or D for short), \(^3\)He, \(^4\)He, and \(^7\)Li produced in the early universe. Among these, deuterium, the first nuclide produced by BBN, is a key primordial material for subsequent reactions. To date, the uncertainty in predicted deuterium abundance (D/H) remains larger than the observational precision. In this study, the Monte Carlo simulation code PRIMAT was used to investigate the sensitivity of 11 important BBN reactions to deuterium abundance. We found that the reaction rate uncertainties of the four reactions d(d,n)\(^3\)He, d(d,p)t, \(\text{d}(\text{p},\gamma )^3\)He, and \(\text{p}(\text{n},\gamma)\text{d}\) had the largest influence on the calculated D/H uncertainty. Currently, the calculated D/H uncertainty cannot reach observational precision even with the recent LUNA precise \(\text{d}(\text{p},\gamma)^3\)He rate. From the nuclear physics aspect, there is still room to largely reduce the reaction-rate uncertainties; hence, further measurements of the important reactions involved in BBN are still necessary. A photodisintegration experiment will be conducted at the Shanghai Laser Electron Gamma Source Facility to precisely study the deuterium production reaction of \(\text{p}(\text{n},\gamma )\text{d}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.j00186.00429 and https://doi.org/10.57760/sciencedb.j00186.00429.

References

  1. G. Gamow, Expanding universe and the origin of elements. Phys. Rev. 70, 572–573 (1946). https://doi.org/10.1103/PhysRev.70.572.2

    Article  ADS  Google Scholar 

  2. A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965). https://doi.org/10.1086/148307

    Article  ADS  Google Scholar 

  3. G. Hinshaw, D. Larson, E. Komatsu et al., Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208, 19 (2013). https://doi.org/10.1088/0067-0049/208/2/19

    Article  ADS  Google Scholar 

  4. P.A.R. Ade, N. Aghanim, M. Arnaud et al., (Planck Collaboration), Planck 2015 results—XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830

    Article  Google Scholar 

  5. B.D. Fields, The primordial lithium problem. Annu. Rev. Nucl. Part. Sci. 61, 47–68 (2011). https://doi.org/10.1146/annurev-nucl-102010-130445

    Article  ADS  Google Scholar 

  6. M. Pospelov, J. Pradler, Big Bang nucleosynthesis as a probe of new physics. Annu. Rev. Nucl. Part. Sci. 60, 539–568 (2010). https://doi.org/10.1146/annurev.nucl.012809.104521

    Article  ADS  Google Scholar 

  7. R.H. Cyburt, B.D. Fields, K.A. Olive et al., Big Bang nucleosynthesis: present status. Rev. Mod. Phys. 88, 015004 (2016). https://doi.org/10.1103/RevModPhys.88.015004

    Article  ADS  Google Scholar 

  8. J.J. He, Cosmological lithium problem. Chin. Sci. Bull. 65, 4047–4062 (2020). https://doi.org/10.1360/TB-2020-0951

    Article  Google Scholar 

  9. S.Q. Hou, J.J. He, A. Parikh et al., Non-extensive statistics to the cosmological lithium problem. Astrophys. J. 834, 165 (2017). https://doi.org/10.3847/1538-4357/834/2/165

    Article  ADS  Google Scholar 

  10. R.J. Cooke, M. Pettini, C.C. Steidel, One percent determination of the primordial deuterium abundance. Astrophys. J. 855, 102 (2018). https://doi.org/10.3847/1538-4357/aaab53

    Article  ADS  Google Scholar 

  11. R.H. Cyburt, Primordial nucleosynthesis for the new cosmology: determining uncertainties and examining concordance. Phys. Rev. 70, 023505 (2004). https://doi.org/10.1103/PhysRevD.70.023505

    Article  ADS  Google Scholar 

  12. A. Coc, E. Vangioni-Flam, P. Descouvemont et al., Updated Big Bang nucleosynthesis compared with Wilkinson microwave anisotropy probe observations and the abundance of light elements. Astrophys. J. 600, 544–552 (2004). https://doi.org/10.1086/380121

    Article  ADS  Google Scholar 

  13. P.D. Serpico, S. Esposito, F. Iocco et al., Nuclear reaction network for primordial nucleosynthesis: a detailed analysis of rates, uncertainties and light nuclei yields. J. Cosmol. Astropart. Phys. 2004, 010 (2004). https://doi.org/10.1088/1475-7516/2004/12/010

    Article  Google Scholar 

  14. C. Pitrou, A. Coc, J.-P. Uzan et al., Precision Big Bang nucleosynthesis with improved Helium-4 predictions. Phys. Rep. 754, 1–66 (2018). https://doi.org/10.1016/j.physrep.2018.04.005

    Article  ADS  MathSciNet  Google Scholar 

  15. S.Q. Hou, PhD thesis, Institute of Modern Physics, Chinese Academy of Sciences (2015) (in Chinese)

  16. Z.H. Li, E.R. Li, J. Su et al., Study of the primordial lithium abundance. Sci. China-Phys. Mech. Astron. 54, 67–72 (2011). https://doi.org/10.1007/s11433-011-4412-z

    Article  ADS  Google Scholar 

  17. J.J. He, A. Parikh, B.A. Brown et al., Thermonuclear \(^{42}{{\rm Ti}}{(p,{\gamma })^{43}{{\rm V}}}\) rate in type-I x-ray bursts. Phys. Rev. C 89, 035802 (2014). https://doi.org/10.1103/PhysRevC.89.035802

    Article  ADS  Google Scholar 

  18. R. Longland, C. Iliadis, A.E. Champagne et al., Charged-particle thermonuclear reaction rates: I. Monte Carlo method and statistical distributions. Nucl. Phys. A 841, 1–30 (2010). https://doi.org/10.1016/j.nuclphysa.2010.04.008

    Article  ADS  Google Scholar 

  19. M.S. Smith, L.H. Kawano, R.A. Malaney et al., Experimental, computational, and observational analysis of primordial nucleosynthesis. Astrophys. J. Suppl. Ser. 85, 219 (1993). https://doi.org/10.1086/191763

    Article  ADS  Google Scholar 

  20. A.P. Serebrov, E.A. Kolomensky, A.K. Fomin et al., Neutron lifetime measurements with a large gravitational trap for ultracold neutrons. Phys. Rev. C 97, 055503 (2018). https://doi.org/10.1103/PhysRevC.97.055503

    Article  ADS  Google Scholar 

  21. S. Ando, R.H. Cyburt, S.W. Hong et al., Radiative neutron capture on a proton at Big-Bang nucleosynthesis energies. Phys. Rev. C 74, 025809 (2006). https://doi.org/10.1103/PhysRevC.74.025809

    Article  ADS  Google Scholar 

  22. C. Iliadis, K.S. Anderson, A. Coc et al., Bayesian estimation of thermonuclear reaction rates. Astrophys. J. 831, 107 (2016). https://doi.org/10.3847/0004-637X/831/1/107

    Article  ADS  Google Scholar 

  23. A. Gómez Iñesta, C. Iliadis, A. Coc et al., Bayesian estimation of thermonuclear reaction rates for deuterium+deuterium reactions. Astrophys. J. 849, 134 (2017). https://doi.org/10.3847/1538-4357/aa9025

    Article  ADS  Google Scholar 

  24. P. Descouvemont, A. Adahchour, C. Angulo et al., Compilation and \(R\)-matrix analysis of Big Bang nuclear reaction rates. At. Data Nucl. Data Tables 88, 203–236 (2004). https://doi.org/10.1016/j.adt.2004.08.001

    Article  ADS  Google Scholar 

  25. M. Viviani, L. Girlanda, A. Kievsky et al., Theoretical study of the d(d, p)\(^3\)H and d(d, n)\(^3\)He processes at low energies. Phys. Rev. Lett. 130, 122501 (2023). https://doi.org/10.1103/PhysRevLett.130.122501

    Article  ADS  Google Scholar 

  26. A. Tumino, R. Sparta, C. Spitaleri et al., New determination of the \(^2\)H(d, p)\(^3\)H and \(^2\)H(d, n)\(^3\)He reaction rates at astrophysical energies. Astrophys. J. 785, 96 (2014). https://doi.org/10.1088/0004-637X/785/2/96

    Article  ADS  Google Scholar 

  27. R.G. Pizzone et al., Big bang nucleosynthesis revisited via trojan horse method measurements. Astrophys. J. 786, 112 (2014). https://doi.org/10.1088/0004-637X/786/2/112

    Article  ADS  Google Scholar 

  28. G.J. Mathews, T. Kajino, T. Shima, Big bang nucleosynthesis with a new neutron lifetime. Phys. Rev. 71, 021302R (2015). https://doi.org/10.1103/PhysRevD.71.021302

    Article  ADS  Google Scholar 

  29. V. Mossa, K. Srockel, F. Cavanna et al., The baryon density of the Universe from an improved rate of deuterium burning. Nature 587, 210–213 (2020). https://doi.org/10.1038/s41586-020-2878-4

    Article  ADS  Google Scholar 

  30. V. Mossa, K. Srockel, F. Cavanna et al., Setup commissioning for an improved measurement of the D(\(p\),\(\gamma\))\(^3\)He cross section at Big Bang Nucleosynthesis energies. Eur. Phys. J. A 56, 144 (2020). https://doi.org/10.1140/epja/s10050-020-00149-1

    Article  ADS  Google Scholar 

  31. K.J. Kang, J.P. Cheng, Y.H. Chen et al., Status and prospects of a deep underground laboratory in China. J. Phys. Conf. Ser. 203, 012028 (2010). https://doi.org/10.1088/1742-6596/203/1/012028

    Article  Google Scholar 

  32. Y.F. Wang, J.X. Liu, L.T. Yang et al., Rare physical events at China Jinping underground laboratory. Nucl. Tech. (in Chinese) 46, 080018 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.080018

    Article  Google Scholar 

  33. J.P. Cheng, K.J. Kang, J.M. Li et al., The China Jinping underground laboratory and its early science. Annu. Rev. Nucl. Part. Sci. 67, 231–251 (2017). https://doi.org/10.1146/annurev-nucl-102115-044842

    Article  ADS  Google Scholar 

  34. Y.C. Wu, X.Q. Hao, Q. Yue et al., Measurement of cosmic ray flux in the China JinPing underground laboratory. Chin. Phys. C 37, 086001 (2013). https://doi.org/10.1088/1674-1137/37/8/086001

    Article  ADS  Google Scholar 

  35. C. Chen, Y.J. Li, H. Zhang et al., Preparation of large-area isotopic magnesium targets for the \(^{25}\)Mg(p,\(\gamma\))\(^{26}\)Al experiment at JUNA. Nucl. Sci. Tech. 31(9), 91 (2020). https://doi.org/10.1007/s41365-020-00800-y

    Article  Google Scholar 

  36. L.Y. Zhang, J. Su, J.J. He et al., Direct measurement of the astrophysical \(^{19}\)F(p,\(\alpha \gamma\))\(^{16}\)O reaction in the deepest operational underground laboratory. Phys. Rev. Lett. 127, 152702 (2021). https://doi.org/10.1103/PhysRevLett.127.152702

    Article  ADS  Google Scholar 

  37. L.Y. Zhang, J.J. He, R.J. deBoer et al., Measurement of \(^{19}\)F(p,\(\gamma\))\(^{20}\)Ne reaction suggests CNO breakout in first stars. Nature 610, 656–660 (2023). https://doi.org/10.1038/s41586-022-05230-x

  38. J. Su, H. Zhang, Z.H. Li et al., First result from the Jinping underground nuclear astrophysics experiment JUNA: precise measurement of the 92 keV \(^{25}\)Mg(p,\(\gamma\))\(^{26}\)Al resonance. Sci. Bull. 67, 125–132 (2022). https://doi.org/10.1016/j.scib.2021.10.018

    Article  Google Scholar 

  39. B. Gao, T.Y. Jiao, Y.T. Li et al., Deep underground laboratory measurement of \(^{13}\)C(\(\alpha\), n)\(^{16}\)O in the Gamow windows of the \(s\) and \(i\) processes. Phys. Rev. Lett. 129, 132701 (2022). https://doi.org/10.1103/PhysRevLett.129.132701

    Article  ADS  Google Scholar 

  40. L.Y. Zhang, J. Su, J.J. He et al., Direct measurement of the astrophysical \(^{19}\)F(p,\(\alpha \gamma\))\(^{16}\)O reaction in a deep-underground laboratory. Phys. Rev. C 106, 055803 (2022). https://doi.org/10.1103/PhysRevC.106.055803

    Article  ADS  Google Scholar 

  41. L.H. Wang, J. Su, Y.P. Shen et al., Measurement of the \(^{18}\)O(\(\alpha\),\(\gamma\))\(^{22}\)Ne reaction rate at JUNA and its impact on probing the origin of SiC grains. Phys. Rev. Lett. 130, 092701 (2023). https://doi.org/10.1103/PhysRevLett.130.092701

    Article  ADS  Google Scholar 

  42. T. Kajino, Underground laboratory JUNA shedding light on stellar nucleosynthesis. Nucl. Sci. Tech. 34(3), 42 (2023). https://doi.org/10.1007/s41365-023-01196-1

    Article  Google Scholar 

  43. W.P. Liu, Z.H. Li, J.J. He et al., Progress of Jinping underground laboratory for nuclear astrophysics (JUNA). Sci. China-Phys. Mech. Astron. 59, 642001 (2016). https://doi.org/10.1007/s11433-016-5785-9

    Article  ADS  Google Scholar 

  44. Q. Wu, L.T. Sun, B.Q. Cui et al., Design of an intense ion source and LEBT for Jinping underground nuclear astrophysics experiments. Nucl. Instrum. Methods A 830, 214–218 (2016). https://doi.org/10.1016/j.nima.2016.05.099

    Article  ADS  Google Scholar 

  45. A. Coc, E. Vangioni, Big-Bang nucleosynthesis with updated nuclear data. J. Phys. Conf. Ser. 202, 012001 (2010). https://doi.org/10.1088/1742-6596/202/1/012001

    Article  Google Scholar 

  46. A. Coc, S. Goriely, Y. Xu et al., Standard Big Bang nucleosynthesis up to CNO with an improved extended nuclear network. Astrophys. J. 744, 158 (2012). https://doi.org/10.1088/0004-637X/744/2/158

    Article  ADS  Google Scholar 

  47. A. Coc, J.-P. Uzan, E. Vangioni, Standard Big Bang nucleosynthesis and primordial CNO abundances after Planck. J. Cosmol. Astropart. Phys. 2014, 050 (2014). https://doi.org/10.1088/1475-7516/2014/10/050

    Article  Google Scholar 

  48. A. Coc, P. Petitjean, J.P. Uzan et al., New reaction rates for improved primordial D=H calculation and the cosmic evolution of deuterium. Phys. Rev. D 92, 123526 (2015). https://doi.org/10.1103/PhysRevD.92.123526

    Article  ADS  Google Scholar 

  49. K. Olive, P. Petitjean, E. Vangioni et al., Higher D or Li: probes of physics beyond the standard model. Mon. Not. R. Astron. Soc. 426, 1427 (2012). https://doi.org/10.1111/j.1365-2966.2012.21703.x

    Article  ADS  Google Scholar 

  50. R.J. Cooke, M. Pettini, R.A. Jorgenson et al., Precision measures of the primordial abundance of deuterium. Astrophys. J. 781, 31 (2014). https://doi.org/10.1088/0004-637X/781/1/31

    Article  ADS  Google Scholar 

  51. M. Pettini et al., Deuterium abundance in the most metal-poor damped Lyman alpha system: converging on \({{\Omega }}_{b,0}h^{2}\). Mon. Not. R. Astron. Soc. 391, 1499–1510 (2008). https://doi.org/10.1086/378152

    Article  ADS  Google Scholar 

  52. D. Kirkman, D. Tytler, N. Suzuki et al., The cosmological baryon density from the deuterium-to-hydrogen ratio in QSO absorption systems: D/H toward Q1243+3047. Astrophys. J. Suppl. Ser. 149, 1–28 (2003). https://doi.org/10.1086/378152

    Article  ADS  Google Scholar 

  53. R.H. Cyburt, B.D. Fields, K.A. Olive, Primordial nucleosynthesis in light of WMAP. Phys. Lett. B 567, 227–234 (2003). https://doi.org/10.1016/j.physletb.2003.06.026

    Article  ADS  Google Scholar 

  54. W.A. Fowler, G.R. Caughlan, B.A. Zimmerman, Thermonuclear reaction rates. Annu. Rev. Astron. Astrophys. 5, 525–570 (1967). https://doi.org/10.1146/annurev.aa.05.090167.002521

    Article  ADS  Google Scholar 

  55. G.M. Hale, D.C. Dodder, E.R. Siciliano et al., ENDF/B-VI Evaluation, Material 125, Revision 1 (1991)

  56. G.M. Hale, A.S. Johnson, Results for n+p capture from an \(R\)-matrix analysis of N-N scattering, in Proceedings of 17th International IUPAP Conference on Few-Body Problems in Physics, 5–10 June (2003)

  57. T. Murata, Evaluation of the \(D(\gamma ,n)p\) reaction cross section. Paper presented at the Proceedings of the 1993 Symposium on Nuclear Data, JAERI, Tokai, Japan (1993)

  58. K. Hara, H. Utsunomiya, S. Goko et al., Photodisintegration of deuterium and big bang nucleosynthesis. Phys. Rev. D 68, 072001 (2003). https://doi.org/10.1103/PhysRevD.68.072001

    Article  ADS  Google Scholar 

  59. T. Suzuki, Y. Nagai, T. Shima et al., First measurement of a \(p(n, \gamma )d\) reaction cross section between 10 and 80 keV. Astrophys. J. 439, L59 (1995). https://doi.org/10.1086/187744

    Article  ADS  Google Scholar 

  60. Y. Naga, T.S. Suzuki, T. Kikuchi et al., Measurement of \({}^{1}{{\rm H}}{(n,{\gamma })^{2}{{\rm H}}}\) reaction cross section at a comparable \(M1/E1\) strength. Phys. Rev. C 56, 3173–3179 (1997). https://doi.org/10.1103/PhysRevC.56.3173

  61. R. Moreh, T.J. Kennett, W.V. Prestwich, \(^{2}{{\rm H}}({\gamma }, {{\rm n}})\) absolute cross section at 2754 keV. Phys. Rev. C 39, 1247–1250 (1989). https://doi.org/10.1103/PhysRevC.39.1247

    Article  ADS  Google Scholar 

  62. Y. Birenbaum, S. Kahane, R. Morek, Absolute cross section for the photodisintegration of deuterium. Phys. Rev. C 32, 1825–1829 (1985). https://doi.org/10.1103/PhysRevC.32.1825

    Article  ADS  Google Scholar 

  63. H.W. Wang, G.T. Fan, L.X. Liu et al., Commissioning of laser electron gamma beamline SLEGS at SSRF. Nucl. Sci. Tech. 33, 87 (2022). https://doi.org/10.1007/s41365-022-01076-0

    Article  Google Scholar 

  64. K.J. Chen, L.X. Liu, Z.R. Hao et al., Simulation and test of the SLEGS TOF spectrometer at SSRF. Nucl. Sci. Tech. 34, 47 (2023). https://doi.org/10.1007/s41365-023-01194-3

    Article  Google Scholar 

  65. H.H. Xu, G.T. Fan, H.W. Wang et al., Interaction chamber for laser Compton slant-scattering in SLEGS beamline at Shanghai Light Source. Nucl. Instrum. Methods A 1033, 166742 (2022). https://doi.org/10.1016/j.nima.2022.166742

    Article  Google Scholar 

  66. Z.R. Hao, G.T. Fan, H.W. Wang et al., Collimator system of SLEGS beamline at Shanghai Light Source. Nucl. Instrum. Methods A 1013, 165638 (2021). https://doi.org/10.1016/j.nima.2021.165638

    Article  Google Scholar 

  67. Z.R. Hao, G.T. Fan, H.W. Wang et al., A new annular collimator system of SLEGS beamline at Shanghai Light Source. Nucl. Instrum. Methods B 519, 9–14 (2022). https://doi.org/10.1016/j.nimb.2022.02.010

    Article  ADS  Google Scholar 

  68. Z.R. Hao, G.T. Fan, L.X. Liu et al., Design and simulation of 4\(\pi\) flat-efficiency \(^3\)He neutron detector array. Nucl. Tech. (in Chinese) 43(11), 57–65 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.110501

  69. A.S. Johnson, G.M. Hale, Recent \(R\)-matrix results for np-capture. Nucl. Phys. A 688, 566c–568c (2001). https://doi.org/10.1016/S0375-9474(01)00789-8

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data calculation and analysis were performed by Zhi-Lin Shen, article ideas and revisions were performed by Jian-Jun He. The first draft of the manuscript was written by Zhi-Lin Shen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian-Jun He.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Key R&D Program of China (No. 2022YFA1602401) and by the National Natural Science Foundation of China (No. 11825504).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, ZL., He, JJ. Study of primordial deuterium abundance in Big Bang nucleosynthesis. NUCL SCI TECH 35, 63 (2024). https://doi.org/10.1007/s41365-024-01423-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01423-3

Keywords

Navigation