Abstract
During the last few decades, rare isotope beam facilities have provided unique data for studying the properties of nuclides located far from the beta-stability line. Such nuclei are often accompanied by exotic structures and radioactive modes, which represent the forefront of nuclear research. Among them, two-proton (2p) radioactivity is a rare decay mode found in a few highly proton-rich isotopes. The 2p decay lifetimes and properties of emitted protons hold invaluable information regarding the nuclear structures in the presence of a low-lying proton continuum; as such, they have attracted considerable research attention. In this review, we present some of the recent experimental and theoretical progress regarding the 2p decay, including technical innovations for measuring nucleon–nucleon correlations and developments in the models that connect their structural aspects with their decay properties. This impressive progress should play a significant role in elucidating the mechanism of these exotic decays, probing the corresponding components inside nuclei, and providing deep insights into the open quantum nature of dripline systems.
Similar content being viewed by others
References
L.N. Cooper, R.L. Mills, A.M. Sessler, Possible superfluidity of a system of strongly interacting fermions. Phys. Rev. 114, 1377–1382 (1959). https://doi.org/10.1103/PhysRev.114.1377
A.J. Leggett, Nobel lecture: superfluid \(^{3}\rm He\): the early days as seen by a theorist. Rev. Mod. Phys. 76, 999–1011 (2004). https://doi.org/10.1103/RevModPhys.76.999
D.M. Brink, R.A. Broglia, Nuclear superfluidity: pairing in finite systems (Nuclear physics and cosmology) (Cambridge University Press, New York, Cambridge Monographs on Particle Physics, 2005)
R.A. Broglia, V. Zelevinsky, Fifty years of nuclear BCS: pairing in finite systems (World Scientific Publishing, Singapore, 2013)
D.J. Dean, M. Hjorth-Jensen, Pairing in nuclear systems: from neutron stars to finite nuclei. Rev. Mod. Phys. 75, 607–656 (2003). https://doi.org/10.1103/RevModPhys.75.607
J. Erler, N. Birge, M. Kortelainen et al., The limits of the nuclear landscape. Nature 486, 509–512 (2012). https://doi.org/10.1038/nature11188
L. Neufcourt, Y.C. Cao, S.A. Giuliani et al., Quantified limits of the nuclear landscape. Phys. Rev. C 101, 044307 (2020). https://doi.org/10.1103/PhysRevC.101.044307
J. Dobaczewski, W. Nazarewicz, Theoretical aspects of science with radioactive nuclear beams. Phil. Trans. R. Soc. Lond. A 356, 2007 (1998). https://doi.org/10.1098/rsta.1998.0261
Scientific opportunities with a rare-isotope facility in the United States. Report of the NAS/NRC rare isotope science assessment committee (The National Academies Press, 2007)
J. Dobaczewski, N. Michel, W. Nazarewicz et al., Shell structure of exotic nuclei. Prog. Part. Nucl. Phys. 59, 432 (2007). https://doi.org/10.1098/rsta.1998.0261
C. Forssén, G. Hagen, M. Hjorth-Jensen et al., Living on the edge of stability, the limits of the nuclear landscape. Phys. Scripta 2013, 014022 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014022
A.B. Balantekin, J. Carlson, D.J. Dean et al., Nuclear theory and science of the Facility for Rare Isotope Beams. Mod. Phys. Lett. A 29, 1430010 (2014). https://doi.org/10.1142/S0217732314300109
The 2015 long range plan in nuclear science: reaching for the horizon (NSAC Long Range Plan Report, 2015)
D.Q. Fang, Y.G. Ma, Progress of experimental studies on two-proton emission. Chin. Sci. Bull. 65, 4018 (2020). https://doi.org/10.1360/TB-2020-0423
V.I. Goldansky, On neutron-deficient isotopes of light nuclei and the phenomena of proton and two-proton radioactivity. Nucl. Phys. 19, 482–495 (1960). https://doi.org/10.1016/0029-5582(60)90258-3
M. Pfützner, Two-proton radioactivity: the status and perspectives. Nucl. Phys. A 738, 101–107 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.017
B. Blank, M. Płoszajczak, Two-proton radioactivity. Rep. Prog. Phys. 71, 046301 (2008). https://doi.org/10.1088/0034-4885/71/4/046301
M. Pfützner, M. Karny, L.V. Grigorenko, K. Riisager, Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567–619 (2012). https://doi.org/10.1103/RevModPhys.84.567
M. Pfützner, Particle radioactivity of exotic nuclei. Phys. Scripta 2013, 014014 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014014
J. Giovinazzo, P. Ascher, L. Audirac et al., Two-proton radioactivity: 10 years of experimental progresses. J. Phys. Conf. Ser 436, 012057 (2013). https://doi.org/10.1088/1742-6596/436/1/012057
E. Olsen, M. Pfützner, N. Birge et al., Erratum: Landscape of two-proton radioactivity Phys. Rev. Lett. 111, 139903 (2013). https://doi.org/10.1103/PhysRevLett.111.139903
E. Olsen, M. Pfützner, N. Birge et al., Landscape of two-proton radioactivity. Phys. Rev. Lett. 110, 222501 (2013). https://doi.org/10.1103/PhysRevLett.110.222501
D.F. Geesaman, R.L. Mcgrath, P.M.S. Lesser et al., Particle decay of \(^{6}\rm Be\). Phys. Rev. C 15, 1835–1838 (1977). https://doi.org/10.1103/PhysRevC.15.1835
O.V. Bochkarev, L.V. Chulkov, A.A. Korsheninniicov et al., Democratic decay of \(^{6}\rm Be\) states. Nucl. Phys. A 505, 215–240 (1989). https://doi.org/10.1016/0375-9474(89)90371-0
G.J. KeKelis, M.S. Zisman, D.K. Scott et al., Masses of the unbound nuclei \(^{16}\rm Ne {, ^{15}\rm F}\), and \(^{12}\rm O\). Phys. Rev. C 17, 1929–1938 (1978). https://doi.org/10.1103/PhysRevC.17.1929
R.A. Kryger, A. Azhari, M. Hellström et al., Two-proton emission from the ground state of \(^{12}\rm O\). Phys. Rev. Lett. 74, 860–863 (1995). https://doi.org/10.1103/PhysRevLett.74.860
J. Giovinazzo, B. Blank, M. Chartier et al., Two-proton radioactivity of 45Fe. Phys. Rev. Lett. 89, 102501 (2002). https://doi.org/10.1103/PhysRevLett.89.102501
M. Pfützner, E. Badura, C. Bingham et al., First evidence for the two-proton decay of \(^{45}\rm Fe\). Eur. Phys. J. A 14, 279–285 (2002). https://doi.org/10.1140/epja/i2002-10033-9
F. Catara, A. Insolia, E. Maglione, A. Vitturi, Relation between pairing correlations and two-particle space correlations. Phys. Rev. C 29, 1091–1094 (1984). https://doi.org/10.1103/PhysRevC.29.1091
N. Pillet, N. Sandulescu, P. Schuck, Generic strong coupling behavior of \(\rm Cooper\) pairs on the surface of superfluid nuclei. Phys. Rev. C 76, 024310 (2007). https://doi.org/10.1103/PhysRevC.76.024310
K. Hagino, H. Sagawa, Pairing correlations in nuclei on the neutron-drip line. Phys. Rev. C 72, 044321 (2005). https://doi.org/10.1103/PhysRevC.72.044321
K. Hagino, H. Sagawa, J. Carbonell et al., Coexistence of BCS- and BEC-like pair structures in halo nuclei. Phys. Rev. Lett. 99, 022506 (2007). https://doi.org/10.1103/PhysRevLett.99.022506
K. Hagino, H. Sagawa, Correlated two-neutron emission in the decay of the unbound nucleus \({}^{26}\rm O\). Phys. Rev. C 89, 014331 (2014). https://doi.org/10.1103/PhysRevC.89.014331
M. Matsuo, Spatial structure of Cooper pairs in nuclei, in Fifty years of nuclear BCS. ed. by R.A. Broglia, V. Zelevinsky (World Scientific Publishing, Singapore, 2012), pp.61–72
K. Fossez, J. Rotureau, N. Michel et al., Continuum effects in neutron-drip-line oxygen isotopes. Phys. Rev. C 96, 024308 (2017). https://doi.org/10.1103/PhysRevC.96.024308
J.L. Fisker, F.K. Thielemann, M. Wiescher, The nuclear reaction waiting points: \(^{22}{{\rm Mg}},^{26}{{\rm Si}}\),\(^{30}{{\rm S, and}}^{34}{{\rm Ar}}\) and bolometrically double-peaked type I X-ray bursts. Astrophys. J. 608, L61–L64 (2004)
D. Seweryniak, P.J. Woods, M.P. Carpenter et al., Level structure of \(^{22}\text{ Mg }\) implications for the \(^{21}\text{ Be }(p,\gamma )^{22}\text{ Mg }\) astrophysical reaction rate and for the \(^{22}\text{ Mg }\) mass. Phys. Rev. Lett. 94, 032501 (2005). https://doi.org/10.1103/PhysRevLett.94.032501
J. Giovinazzo, B. Blank, C. Borcea et al., First direct observation of two protons in the decay of \(^{45}\rm Fe\) with a time-projection chamber. Phys. Rev. Lett. 99, 102501 (2007). https://doi.org/10.1103/PhysRevLett.99.102501
W. Nazarewicz, J. Dobaczewski, T.R. Werner et al., Structure of proton drip-line nuclei around doubly magic \(^{48}\rm Ni\). Phys. Rev. C 53, 740–751 (1996). https://doi.org/10.1103/PhysRevC.53.740
W.E. Ormand, Mapping the proton drip line up to \(A=70\). Phys. Rev. C 55, 2407–2417 (1997). https://doi.org/10.1103/PhysRevC.55.2407
F.C. Barker, 12O ground-state decay by 2He emission. Phys. Rev. C 63, 047303 (2001). https://doi.org/10.1103/PhysRevC.63.047303
B.A. Brown, F.C. Barker, Di-proton decay of \({}^{45}\text{Fe}\). Phys. Rev. C 67, 041304 (2003). https://doi.org/10.1103/PhysRevC.67.041304
M. Gonçalves, N. Teruya, O.A.P. Tavares et al., Two-proton emission half-lives in the effective liquid drop model. Phys. Lett. B 774, 14–19 (2017). https://doi.org/10.1016/j.physletb.2017.09.032
J.P. Cui, Y.H. Gao, Y.Z. Wang et al., Two-proton radioactivity within a generalized liquid drop model. Phys. Rev. C 101, 014301 (2020). https://doi.org/10.1103/PhysRevC.101.014301
J.P. Cui, Y.H. Gao, Y.Z. Wang et al., Erratum: two-proton radioactivity within a generalized liquid drop model, Phys. Rev. C 104, 029902 (2021). https://doi.org/10.1103/PhysRevC.104.029902
L. Neufcourt, Y.C. Cao, S. Giuliani et al., Beyond the proton drip line: Bayesian analysis of proton-emitting nuclei. Phys. Rev. C 101, 014319 (2020). https://doi.org/10.1103/PhysRevC.101.014319
H.M. Liu, Y.T. Zou, X. Pan et al., New Geiger-Nuttall law for two-proton radioactivity. Chin. Phys. C 45, 024108 (2021). https://doi.org/10.1088/1674-1137/abd01e
D.S. Delion, S.A. Ghinescu, Two-proton emission systematics. Phys. Rev. C 105, L031301 (2022). https://doi.org/10.1103/PhysRevC.105.L031301
T. Goigoux, P. Ascher, B. Blank et al., Two-proton radioactivity of \(^{67}\rm Kr\). Phys. Rev. Lett. 117, 162501 (2016). https://doi.org/10.1103/PhysRevLett.117.162501
T.B. Webb, S.M. Wang, K.W. Brown et al., First observation of unbound \(^{11}\text{ O }\), the mirror of the halo nucleus \(^{11}\text{ Li }\). Phys. Rev. Lett. 122, 122501 (2019). https://doi.org/10.1103/PhysRevLett.122.122501
S.M. Wang, W. Nazarewicz, R.J. Charity et al., Structure and decay of the extremely proton-rich nuclei \(^{11,12}\rm O\). Phys. Rev. C 99, 054302 (2019). https://doi.org/10.1103/PhysRevC.99.054302
V.I. Goldansky, 2-proton radioactivity. Nucl. Phys 27, 648–664 (1961). https://doi.org/10.1016/0029-5582(61)90309-1
R. Barton, R.E. Bell, W.R. Frisken et al., Observation of delayed proton radioactivity. Can. J. Phys 41, 2007–2025 (1963). https://doi.org/10.1139/p63-201
K.P. Jackson, C.U. Cardinal, H.C. Evans et al., \(^{53}\rm Co ^{m}\): a proton-unstable isomer. Phys. Lett. B 33, 281–283 (1970). https://doi.org/10.1016/0370-2693(70)90269-8
S. Hofmann, W. Reisdorf, G. Munzenberg et al., Proton radioactivity of \(^{151}\rm Lu\). Z. Phys. A-Hadrons. Nuclei 305, 111–123 (1982). https://doi.org/10.1007/BF01415018
B.A. Brown, Diproton decay of nuclei on the proton drip line. Phys. Rev. C 43, R1513–R1517 (1991). https://doi.org/10.1103/PhysRevC.43.R1513
B.A. Brown, Erratum: diproton decay of nuclei on the proton drip line. Phys. Rev. C 44, 924–924 (1991). https://doi.org/10.1103/PhysRevC.44.924
B.J. Cole, Stability of proton-rich nuclei in the upper sd shell and lower pf shell. Phys. Rev. C 54, 1240–1248 (1996). https://doi.org/10.1103/PhysRevC.54.1240
W.E. Ormand, Properties of proton drip-line nuclei at the sd-fp-shell interface. Phys. Rev. C 53, 214–221 (1996). https://doi.org/10.1103/PhysRevC.53.214
V.I. Goldansky, Emission of \({\beta }^{+}\)-delayed pairs of proton and doubly \({\beta }^{+}\)-delayed protons and particles. JETP. Lett. 39, 554–556 (1980)
M.D. Cable, J. Honkanen, R.F. Parry et al., Discovery of beta-delayed two-proton radioactivity: \(^{22}\rm Al\). Phys. Rev. Lett 50, 404–406 (1983). https://doi.org/10.1103/PhysRevLett.50.404
B. Blank, F. Boue, S. Andriamonje et al., Spectroscopic studies of the \(\beta p\) and \(\beta\)2\(p\) decay of \(^{23}\rm Si\). Z. Phys. A-Hadrons. Nuclei 357, 247–254 (1997). https://doi.org/10.1007/s002180050241
J. Honkanen, M.D. Cable, R.F. Parry et al., Beta-delayed two-proton decay of \(^{26}\rm P\). Phys. Lett. B 133, 146–148 (1983). https://doi.org/10.1016/0370-2693(83)90547-6
V. Borrel, J.C. Jacmart, F. Pougheon et al., \(^{31}{{\rm Ar}}{~{\rm and}~ ^{27}{{\rm S}}}\): beta-delayed two-proton emission and mass excess. Nucl. Phys. A 531, 353–369 (1991). https://doi.org/10.1016/0375-9474(91)90616-E
J.E. Reiff, M.A.C. Hotchkis, D.M. Moltz et al., A fast in-beam recoil catcher wheel and the observation of beta-delayed two-proton emission from \(^{31}\rm Ar\). Nucl. Instrum Methods. Phys. Res. Sect A 276, 228–232 (1989). https://doi.org/10.1016/0168-9002(89)90637-2
J. Äystö, D.M. Moltz, X.J. Xu et al., Observation of the first \({T}_{z}=-\frac{5}{2}\) nuclide, \(^{35}\rm Ca\), via its \(\beta\)-delayed two-proton emission. Phys. Rev. Lett. 55, 1384–1387 (1985). https://doi.org/10.1103/PhysRevLett.55.1384
D.M. Moltz, J.C. Batchelder, T.F. Lang et al., Beta-delayed two-proton decay of \(^{39}\rm Ti\). Z. Phys. A-Hadrons. Nuclei 342, 273–276 (1992). https://doi.org/10.1007/BF01291509
V. Borrel, R. Anne, D. Bazin et al., The decay modes of proton drip-line nuclei with a between 42 and 47. Z. Phys. A-Hadrons. Nuclei 344, 135–144 (1992). https://doi.org/10.1007/BF01291696
C. Dossat, N. Adimi, F. Aksouh et al., The decay of proton-rich nuclei in the mass \(A =36-56\) region. Nucl. Phys. A 792, 18–86 (2007). https://doi.org/10.1016/j.nuclphysa.2007.05.004
L. Audirac, P. Ascher, B. Blank et al., Direct and \(\beta\)-delayed multi-proton emission from atomic nuclei with a time projection chamber: the cases of \(^{43}{{\rm Cr}}{, ^{45}{{\rm Fe}}}\), and \(^{51}{{\rm Ni}}\). Eur. Phys. J. A 48, 179 (2012). https://doi.org/10.1140/epja/i2012-12179-1
M. Pomorski, M. Pfützner, W. Dominik et al., Proton spectroscopy of \(^{48}{{\rm Ni}}{,^{46}{{\rm Fe}}}\), and \(^{44}{{\rm Cr}}\). Phys. Rev. C 90, 014311 (2014). https://doi.org/10.1103/PhysRevC.90.014311
C.R. Bain, P.J. Woods, R. Coszach et al., Two proton emission induced via a resonance reaction. Phys. Lett. B 373, 35–39 (1996). https://doi.org/10.1016/0370-2693(96)00109-8
M.J. Chromik, B.A. Brown, M. Fauerbach et al., Excitation and decay of the first excited state of \(^{17}\rm Ne\). Phys. Rev. C 55, 1676–1679 (1997). https://doi.org/10.1103/PhysRevC.55.1676
J. Gómez del Campo, A. Galindo-Uribarri, J.R. Beene et al., Decay of a resonance in \(^{18}\rm Ne\) by the simultaneous emission of two protons. Phys. Rev. Lett. 86, 43–46 (2001). https://doi.org/10.1103/PhysRevLett.86.43
G. Raciti, G. Cardella, M. De Napoli, et al., Experimental evidence of \(^{2}{{\rm He}}{~{\rm decay~from}~ ^{18}{{\rm Ne}}}\) excited states. Phys. Rev. Lett. 100, 192503 (2008). https://doi.org/10.1103/PhysRevLett.100.192503
Y.T. Wang, D.Q. Fang, K. Wang et al., Observation of \(^{2}{{\rm He}}{~{\rm emission~from~the~proton-rich~nucleus~} ^{22}{{\rm Al}}}\)-delayed 2He emission. Phys. Lett. B 784, 12–15 (2018). https://doi.org/10.1016/j.physletb.2018.07.034
X.X. Xu, C.J. Lin, L.J. Sun et al., Observation of \(\beta\)-delayed two-proton emission in the decay of \(^{22}\rm Si\). Phys. Lett. B 766, 312–316 (2017). https://doi.org/10.1016/j.physletb.2017.01.028
K. Wang, D.Q. Fang, Y.T. Wang et al., Spectroscopic study of \(\beta\)-delayed particle emission from proton-rich nucleus \(^{23}\rm Si\). Int. J. Mod. Phys. E 27, 1850014 (2018). https://doi.org/10.1142/S0218301318500143
Y.G. Ma, D.Q. Fang, X.Y. Sun et al., Different mechanism of two-proton emission from proton-rich nuclei \(^{23}{{\rm Al}}{ ~{\rm and~} ^{22}{{\rm Mg}}}\). Phys. Lett. B 743, 306–309 (2015). https://doi.org/10.1016/j.physletb.2015.02.066
D.Q. Fang, Y.G. Ma, X.Y. Sun et al., Proton-proton correlations in distinguishing the two-proton emission mechanism of \(^{23}{{\rm Al}}{~{\rm and~} ^{22}{{\rm Mg}}}\). Phys. Rev. C 96, 044621 (2016). https://doi.org/10.1103/PhysRevC.96.044621
X.X. Xu, C.J. Lin, H.M. Jia et al., Correlations of two protons emitted from excited states of \(^{28}{{\rm S}}{~{\rm and~} ^{27}{{\rm P}}}\). Phys. Lett. B 727, 126–129 (2013). https://doi.org/10.1016/j.physletb.2013.10.029
C.J. Lin, X.X. Xu, H.M. Jia et al., Experimental study of two-proton correlated emission from \(^{29}\rm S\) excited states. Phys. Rev. C. 80, 014310 (2009). https://doi.org/10.1103/PhysRevC.80.014310
X.X. Xu, C.J. Lin, H.M. Jia et al., Investigation of two-proton emission from excited states of the odd-\(Z\) nucleus \(^{28}{{\rm P}}\) by complete-kinematics measurements. Phys. Rev. C. 81, 054317 (2010). https://doi.org/10.1103/PhysRevC.81.054317
G.Z. Shi, J.J. Liu, Z.Y. Lin et al., \(\beta\)-delayed two-proton decay of \(^{27}\rm S\) at the proton-drip line. Phys. Rev. C 103, L061301 (2021). https://doi.org/10.1103/PhysRevC.103.L061301
C.G. Wu, H.Y. Wu, J.G. Li et al., RIBLL Collaboration, \(\beta\)-decay spectroscopy of the proton drip-line nucleus \(^{22}\rm Al\). Phys. Rev. C 104, 044311 (2021). https://doi.org/10.1103/PhysRevC104.044311
I. Mukha, K. Suemmerer, L. Acosta et al., Spectroscopy of proton-unbound nuclei by tracking their decay products in-flight: one- and two-proton decays of \(^{15}{{\rm Fe}}{, ^{16}{{\rm Ne}}}\) and \(^{19}{{\rm Na}}\). Phys. Rev. C 82, 054315 (2010). https://doi.org/10.1103/PhysRevC.82.054315
I. Mukha, K. Sümmerer, L. Acosta et al., Observation of two-proton radioactivity of \(^{19}\rm Mg\) by tracking the decay products. Phys. Rev. Lett. 99, 182501 (2007). https://doi.org/10.1103/PhysRevLett.99.182501
T.B. Webb, R.J. Charity, J.M. Elson et al., Invariant-mass spectrum of \(^{11}\rm O\). Phys. Rev. C 101, 044317 (2020). https://doi.org/10.1103/PhysRevC.101.044317
V.I. Goldansky, Neutron-excessive nuclei and two-proton radioactivity. Phys. Lett. B 212, 11–17 (1988). https://doi.org/10.1016/0370-2693(88)91226-9
B. Blank, A. Bey, G. Canchel et al., First observation of \(^{54}\rm Zn\) and its decay by two-proton emission. Phys. Rev. Lett. 94, 232501 (2005). https://doi.org/10.1103/PhysRevLett.94.232501
C. Dossat, A. Bey, B. Blank et al., Two-proton radioactivity studies with \(^{45}{{\rm Fe}}{~{\rm and~} ^{48}{{\rm Ni}}}\). Phys. Rev. C 72, 054315 (2005). https://doi.org/10.1103/PhysRevC.72.054315
M. Pomorski, M. Pfützner, W. Dominik et al., First observation of two-proton radioactivity in \(^{48}\rm Ni\). Phys. Rev. C 83, 061303 (2011). https://doi.org/10.1103/PhysRevC.83.061303
K. Miernik, W. Dominik, Z. Janas et al., Two-proton radioactivity of \(^{45}\rm Fe\). Eur. Phys. J. A 42, 431–439 (2009). https://doi.org/10.1140/epja/i2009-10781-x
P. Ascher, L. Audirac, N. Adimi et al., Direct observation of two protons in the decay of \(^{54}\rm Zn\). Phys. Rev. Lett. 107, 102502 (2011). https://doi.org/10.1103/PhysRevLett.107.102502
Evaluated Nuclear Structure Data File (ENSDF), http://www.nndc.bnl.gov/ensdf/
F. Wamers, J. Marganiec, F. Aksouh et al., First observation of the unbound nucleus \(^{15}\rm Ne\). Phys. Rev. Lett. 112, 132502 (2014). https://doi.org/10.1103/PhysRevLett.112.132502
Y. Jin, C.Y. Niu, K.W. Brown et al., First observation of the four-proton unbound nucleus \(^{18}\rm Mg\). Phys. Rev. Lett. 127, 262502 (2021). https://doi.org/10.1103/PhysRevLett.127.262502
I.A. Egorova, R.J. Charity, L.V. Grigorenko et al., Democratic decay of \(^{6}\rm Be\) exposed by correlations. Phys. Rev. Lett. 109, 202502 (2012). https://doi.org/10.1103/PhysRevLett.109.202502
R.J. Charity, J.M. Elson, J. Manfredi et al., \(2p\)-\(2p\) decay of 8C and isospin-allowed \(2p\) decay of the isobaric-analog state in 8B. Phys. Rev. C 82, 041304 (2010). https://doi.org/10.1103/PhysRevC.82.041304
T.B. Webb, R.J. Charity, J.M. Elson et al., Particle decays of levels in \(^{11,12}{{\rm N}}{{~\rm and~} ^{12}{{\rm O}}}\) investigated with the invariant-mass method. Phys. Rev. C 100, 024306 (2019). https://doi.org/10.1103/PhysRevC.100.024306
I. Mukha, L. Grigorenko, K. Sümmerer et al., Proton-proton correlations observed in two-proton decay of \(^{19}{{\rm Mg}}{{~\rm and~} ^{16}{{\rm Ne}}}\). Phys. Rev. C 77, 061303 (2008). https://doi.org/10.1103/PhysRevC.77.061303
K.W. Brown, R.J. Charity, L.G. Sobotka et al., Observation of long-range three-body \({{\rm Coulomb}}\) effects in the decay of \(^{16}{{\rm Ne}}\). Phys. Rev. Lett. 113, 232501 (2014). https://doi.org/10.1103/PhysRevLett.113.232501
K.W. Brown, R.J. Charity, L.G. Sobotka et al., Interplay between sequential and prompt two-proton decay from the first excited state of \(^{16}\rm Ne\). Phys. Rev. C 92, 034329 (2015). https://doi.org/10.1103/PhysRevC.92.034329
P. Voss, T. Baumann, D. Bazin et al., \(^{19}\rm Mg\) two-proton decay lifetime. Phys. Rev. C 90, 014301 (2014). https://doi.org/10.1103/PhysRevC.90.014301
K.W. Brown, R.J. Charity, J.M. Elson et al., Proton-decaying states in light nuclei and the first observation of \(^{17}\rm Na\). Phys. Rev. C 95, 044326 (2017). https://doi.org/10.1103/PhysRevC.95.044326
X.-D. Xu, I. Mukha, L.V. Grigorenko et al., Spectroscopy of excited states of unbound nuclei \(^{30}{{\rm Ar}}{{\rm ~and~} ^{29}{{\rm Cl}}}\). Phys. Rev. C 97, 034305 (2018). https://doi.org/10.1103/PhysRevC.97.034305
I. Mukha, L.V. Grigorenko, X. Xu et al., Observation and spectroscopy of new proton-unbound isotopes \(^{30}{{\rm Ar}}{{~\rm and~} ^{29}{{\rm Cl}}}\): an interplay of prompt two-proton and sequential decay. Phys. Rev. Lett. 115, 202501 (2015). https://doi.org/10.1103/PhysRevLett.115.202501
H.-L. Wang, Z. Wang, C.-S. Gao et al., Design and tests of the prototype beam monitor of the CSR external-target experiment. Nucl. Sci. Tech. 33, 36 (2022). https://doi.org/10.1007/s41365-022-01021-1
S.-W. Bai, X.-F. Yang, S.-J. Wang et al., Commissioning of a high-resolution collinear laser spectroscopy apparatus with a laser ablation ion source. Nucl. Sci. Tech. 33, 9 (2022). https://doi.org/10.1007/s41365-022-00992-5
W. Nan, B. Guo, C.-J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at brif: measurement of the angular distribution of 23Na + 40Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). https://doi.org/10.1007/s41365-021-00889-9
C.-W. Ma, H.-L. Wei, X.-Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 103911 (2021). https://doi.org/10.1016/j.ppnp.2021.103911
C.-W. Ma, X.-B. Wei, X.-X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions using Bayesian neural networks. Chin. Phys. C 46, 074104 (2022). https://doi.org/10.1088/1674-1137/ac5efb
T.J.M. Symons, Y.P. Viyogi, G.D. Westfall et al., Observation of new neutron-rich isotopes by fragmentation of 205-mev/nucleon 40Ar ions. Phys. Rev. Lett. 42, 40–43 (1979). https://doi.org/10.1103/PhysRevLett.42.40
O. Kofoed-Hansen, K. Nielsen, Short-lived krypton isotopes and their daughter substances. Phys. Rev. X 82, 96–97 (1951). https://doi.org/10.1103/PhysRev.82.96.2
Y.T. Wang, D.Q. Fang, X.X. Xu et al., Implantation-decay method to study the \(\beta\)-delayed charged particle decay. Nucl. Sci. Tech. 29, 98 (2018). https://doi.org/10.1007/s41365-018-0438-5
L.J. Sun, X.X. Xu, C.J. Lin et al., A detection system for charged-particle decay studies with a continuous-implantation method. Nucl. Instrum. Methods Phys. Res. Sect. A 804, 1–7 (2015). https://doi.org/10.1016/j.nima.2015.09.039
J.Y. Xu, Q.T. Li, Y.L. Ye et al., Performance of a small AT-TPC prototype. Nucl. Sci. Tech. 29, 97 (2018). https://doi.org/10.1007/s41365-018-0437-6
M. Pomorski, K. Miernik, W. Dominik et al., \(\beta\)-delayed proton emission branches in \(^{43}\rm Cr\). Phys. Rev. C 83, 014306 (2011). https://doi.org/10.1103/PhysRevC.83.014306
F.F. Duan, Y.Y. Yang, B.T. Hu et al., Silicon detector array for radioactive beam experiments at HIRFL-RIBLL. Nucl. Sci. Tech 29, 165 (2018). https://doi.org/10.1007/s41365-018-0499-5
J.H. Liu, Z. Ge, Q. Wang et al., Electrostatic-lenses position-sensitive TOF MCP detector for beam diagnostics and new scheme for mass measurements at HIAF. Nucl. Sci. Tech. 30, 152 (2019). https://doi.org/10.1007/s41365-019-0676-1
R. Grzywacz, Applications of digital pulse processing in nuclear spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. B 204, 649–659 (2003). https://doi.org/10.1016/S0168-583X(02)02146-8
L.V. Grigorenko, T.D. Wiser, K. Miernik et al., Complete correlation studies of two-proton decays: 6Be and 45Fe. Phys. Lett. B 677, 30–35 (2009). https://doi.org/10.1016/j.physletb.2009.04.085
L.V. Grigorenko, T.D. Wiser, K. Mercurio et al., Three-body decay of \(^{6}\rm Be\). Phys. Rev. C 80, 034602 (2009). https://doi.org/10.1103/PhysRevC.80.034602
T. Oishi, K. Hagino, H. Sagawa, Role of diproton correlation in two-proton-emission decay of the \(^{6}\rm Be\) nucleus. Phys. Rev. C 90, 034303 (2014). https://doi.org/10.1103/PhysRevC.90.034303
S.M. Wang, W. Nazarewicz, Fermion pair dynamics in open quantum systems. Phys. Rev. Lett. 126, 142501 (2021). https://doi.org/10.1103/PhysRevLett.126.142501
L.V. Grigorenko, I.G. Mukha, I.J. Thompson et al., Two-proton widths of \(^{12}{{\rm O}}{, ^{16}{{\rm Ne}}}\), and three-body mechanism of thomas-ehrman shift. Phys. Rev. Lett. 88, 042502 (2002). https://doi.org/10.1103/PhysRevLett.88.042502
T.B. Webb, S.M. Wang, K.W. Brown et al., First observation of unbound \(^{11}{{\rm O}}{,~{\rm the~mirror~of~the~halo~nucleus~} ^{11}{{\rm Li}}}\). Phys. Rev. Lett. 122, 122501 (2019). https://doi.org/10.1103/PhysRevLett.122.122501
S. M. Wang, W. Nazarewicz, Nucleon-nucleon correlations in the extreme oxygen isotopes. J. Phys. G: Nucl. Part. Phys. (2022). https://doi.org/10.1088/1361-6471/ac888f
R. Jahn, R.L. Mcgrath, D.M. Moltz et al., Angular correlations in the beta-delayed two-proton decay of \(^{22}\rm Al\). Phys. Rev. C 31, 1576–1578 (1985). https://doi.org/10.1103/PhysRevC.31.1576
R.H. Brown, R.Q. Twiss, A test of a new type of stellar interferometer on sirius. Nature 178, 1046–1048 (1956). https://doi.org/10.1038/1781046a0
S.E. Koonin, Proton pictures of high-energy nuclear collisions. Phys. Lett. B 70, 43–47 (1977). https://doi.org/10.1016/0370-2693(77)90340-9
L. Zhou, D.Q. Fang, Effect of source size and emission time on the p-p momentum correlation function in the two-proton emission process. Nucl. Sci. Tech. 31, 52 (2020). https://doi.org/10.1007/s41365-020-00759-w
A. Spyrou, Z. Kohley, T. Baumann et al., First observation of ground state dineutron decay: \(^{16}\rm Be\). Phys. Rev. Lett. 108, 102501 (2012). https://doi.org/10.1103/PhysRevLett.108.102501
A. Revel, F.M. Marqués, O. Sorlin et al., \({\rm R\rm ^{3}\rm B}\) Collaboration, Strong neutron pairing in \(\text{ core }+4n\) nuclei. Phys. Rev. Lett. 120, 152504 (2018). https://doi.org/10.1103/PhysRevLett.120.152504
B. Blank, M.J.G. Borge, Nuclear structure at the proton drip line: advances with nuclear decay studies. Prog. Part. Nucl. Phys. 60, 403–483 (2008). https://doi.org/10.1016/j.ppnp.2007.12.001
Z.-P. Gao, Y.-J. Wang, H.-L. Lü et al., Machine learning the nuclear mass. Nucl. Sci. Tech. 32, 109 (2021). https://doi.org/10.1007/s41365-021-00956-1
D. Benzaid, S. Bentridi, A. Kerraci et al., Bethe-weizsäcker semi-empirical mass formula parameters 2019 update based on AME2016. Nucl. Sci. Tech. 31, 9 (2020). https://doi.org/10.1007/s41365-019-0718-8
B.A. Brown, R.R.C. Clement, H. Schatz et al., Proton drip-line calculations and the \(\rm rp\) process. Phys. Rev. C 65, 045802 (2002). https://doi.org/10.1103/PhysRevC.65.045802
W. Di, C.-L. Bai, H. Sagawa et al., Contributions of optimized tensor interactions on the binding energies of nuclei. Nucl. Sci. Tech. 31, 14 (2020). https://doi.org/10.1007/s41365-020-0727-7
M. Thoennessen, The discovery of isotopes (Springer, Cham, 2016)
G. Audi, A.H. Wapstra, C. Thibault, The AME2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 729, 337–676 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003
M. Wang, G. Audi, F.G. Kondev et al., The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2017). https://doi.org/10.1088/1674-1137/41/3/030003
J.A. Hoeting, D. Madigan, A.E. Raftery, C.T. Volinsky, Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I George, and a rejoinder by the authors. Stat. Sci. 14, 382–417 (1999)
L. Wasserman, Bayesian model selection and model averaging. J. Math. Psychol. 44, 92–107 (2000). https://doi.org/10.1006/jmps.1999.1278
J.M. Bernardo, A.F.M. Smith, Bayesian Theory (Wiley, New York, 1994)
A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering, reactions and decay in nonrelativistic quantum mechanics (Israel Program for Scientific Translation, Jerusalem, 1969)
P. Papka, R. Álvarez-Rodríguez, F. Nemulodi et al., Decay of \(^{6}{{\rm Be}}{{\rm ~populated~in~the~} ^{6}{{\rm Li}}}\)(\(^{3}{{\rm He}}{,^{3}{{\rm H}}}\)) charge-exchange reaction. Phys. Rev. C 81, 054308 (2010). https://doi.org/10.1103/PhysRevC.81.054308
K. Miernik, W. Dominik, Z. Janas et al., Two-proton correlations in the decay of \(^{45}\rm Fe\). Phys. Rev. Lett. 99, 192501 (2007). https://doi.org/10.1103/PhysRevLett.99.192501
K. Bennaceur, F. Nowacki, J. Okołowicz et al., Analysis of the \(^{16}\)O(p,\(\gamma\))\(^{17}\)F capture reaction using the shell model embedded in the continuum. Nucl. Phys. A 671, 203–232 (2000). https://doi.org/10.1016/S0375-9474(99)00851-9
J. Okołowicz, M. Płoszajczak, I. Rotter, Dynamics of quantum systems embedded in a continuum. Phys. Rep. 374, 271–383 (2003). https://doi.org/10.1016/S0370-1573(02)00366-6
J. Rotureau, J. Okołowicz, M. Płoszajczak, Microscopic theory of the two-proton radioactivity. Phys. Rev. Lett. 95, 042503 (2005). https://doi.org/10.1103/PhysRevLett.95.042503
J. Rotureau, J. Okołowicz, M. Płoszajczak, Theory of the two-proton radioactivity in the continuum shell model. Nucl. Phys. A 767, 13–57 (2006). https://doi.org/10.1016/j.nuclphysa.2005.12.005
B.A. Brown, B. Blank, J. Giovinazzo, Hybrid model for two-proton radioactivity. Phys. Rev. C 100, 054332 (2019). https://doi.org/10.1103/PhysRevC.100.054332
L.V. Grigorenko, M.V. Zhukov, Two-proton radioactivity and three-body decay. II. Exploratory studies of lifetimes and correlations. Phys. Rev. C 68, 054005 (2003). https://doi.org/10.1103/PhysRevC.68.054005
L.V. Grigorenko, T.A. Golubkova, J.S. Vaagen et al., Decay mechanism and lifetime of \(^{67}\rm Kr\). Phys. Rev. C 95, 021601 (2017). https://doi.org/10.1103/PhysRevC.95.021601
E. Braaten, H.W. Hammer, Universality in few-body systems with large scattering length. Phys. Rep. 428, 259–390 (2006). https://doi.org/10.1016/j.physrep.2006.03.001
D. Baye, P. Descouvemont, N.K. Timofeyuk, Matter densities of B-8 and Li-8 in a microscopic cluster model and the proton-halo problem of B-8. Nucl. Phys. A 577, 624–640 (1994)
K. Hagino, H. Sagawa, Decay dynamics of the unbound \({}^{25}{{\rm O}}{~{\rm and~} {}^{26}{{\rm O}}}\) nuclei. Phys. Rev. C 93, 034330 (2016). https://doi.org/10.1103/PhysRevC.93.034330
K. Hagino, S. Sagawa, Are there good probes for di-neutron correlation in light neutron-rich nuclei? Few-Body Syst. 57, 185 (2016). https://doi.org/10.1007/s00601-015-1027-3
Y. Suzuki, K. Ikeda, Cluster-orbital shell model and its application to the \(\rm He\) isotopes. Phys. Rev. C 38, 410–413 (1988). https://doi.org/10.1103/PhysRevC.38.410
N. Michel, W. Nazarewicz, M. Płoszajczak et al., Gamow shell model description of neutron-rich nuclei. Phys. Rev. Lett. 89, 042502 (2002). https://doi.org/10.1103/PhysRevLett.89.042502
S.M. Wang, N. Michel, W. Nazarewicz et al., Structure and decays of nuclear three-body systems: the Gamow coupled-channel method in \(\rm Jacobi\) coordinates. Phys. Rev. C 96, 044307 (2017). https://doi.org/10.1103/PhysRevC.96.044307
T. Berggren, On the use of resonant states in eigenfunction expansions of scattering and reaction amplitudes. Nucl. Phys. A 109, 265–287 (1968). https://doi.org/10.1016/0375-9474(68)90593-9
G. Papadimitriou, A.T. Kruppa, N. Michel et al., Charge radii and neutron correlations in helium halo nuclei. Phys. Rev. C 84, 051304 (2011). https://doi.org/10.1103/PhysRevC.84.051304
T. Oishi, M. Kortelainen, A. Pastore, Dependence of two-proton radioactivity on nuclear pairing models. Phys. Rev. C 96, 044327 (2017). https://doi.org/10.1103/PhysRevC.96.044327
O. Hen, G.A. Miller, E. Piasetzky et al., Nucleon-nucleon correlations, short-lived excitations, and the quarks within. Rev. Mod. Phys. 89, 045002 (2017). https://doi.org/10.1103/RevModPhys.89.045002
K.M. Watson, The effect of final state interactions on reaction cross sections. Phys. Rev. 88, 1163 (1952). https://doi.org/10.1103/PhysRev.88.1163
A.B. Migdal, Theory of nuclear reactions with formation of slow particles. Sov. Phys. JETP 1, 2 (1955)
R.J.N. Phillips, Comparison of p-p and n-n final state interactions. Nucl. Phys. 53, 650–656 (1964). https://doi.org/10.1016/0029-5582(64)90643-1
S.M. Wang, W. Nazarewicz, Puzzling two-proton decay of \(^{67}\rm Kr\). Phys. Rev. Lett. 120, 212502 (2018). https://doi.org/10.1103/PhysRevC.120.212502
K. Hagino, N. Rowley, A.T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123, 143–152 (1999). https://doi.org/10.1016/S0010-4655(99)00243-X
K. Hagino, Role of dynamical particle-vibration coupling in reconciliation of the \({d}_{3/2}\) puzzle for spherical proton emitters. Phys. Rev. C 64, 041304 (2001). https://doi.org/10.1103/PhysRevC.64.041304
B. Barmore, A.T. Kruppa, W. Nazarewicz et al., Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method. Phys. Rev. C 62, 054315 (2000). https://doi.org/10.1103/PhysRevC.62.054315
A.T. Kruppa, W. Nazarewicz, Gamow and \(R\)-matrix approach to proton emitting nuclei. Phys. Rev. C 69, 054311 (2004). https://doi.org/10.1103/PhysRevC.69.034314
N. Michel, W. Nazarewicz, M. Płoszajczak et al., Shell model in the complex energy plane. J. Phys. G 36, 013101 (2009)
A.T. Kruppa, B. Barmore, W. Nazarewicz et al., Fine structure in the decay of deformed proton emitters: Nonadiabatic approach. Phys. Rev. Lett. 84, 4549–4552 (2000). https://doi.org/10.1103/PhysRevLett.84.4549
H. Esbensen, C.N. Davids, Coupled-channels treatment of deformed proton emitters. Phys. Rev. C 63, 014315 (2000). https://doi.org/10.1103/PhysRevC.63.014315
C.N. Davids, H. Esbensen, Particle-vibration coupling in proton decay of near-spherical nuclei. Phys. Rev. C 64, 034317 (2001). https://doi.org/10.1103/PhysRevC.64.034317
C.N. Davids, H. Esbensen, Decay rate of triaxially deformed proton emitters. Phys. Rev. C 69, 034314 (2004). https://doi.org/10.1103/PhysRevC.69.034314
G. Fiorin, E. Maglione, L.S. Ferreira, Theoretical description of deformed proton emitters: nonadiabatic quasiparticle method. Phys. Rev. C 67, 054302 (2003). https://doi.org/10.1103/PhysRevC.67.054302
P. Arumugam, E. Maglione, L.S. Ferreira, Nonadiabatic quasiparticle description of triaxially deformed proton emitters. Phys. Rev. C 76, 044311 (2007). https://doi.org/10.1103/PhysRevC.76.044311
W. Nazarewicz, J. Dudek, R. Bengtsson et al., Microscopic study of the high-spin behaviour in selected A≃80 nuclei. Nucl. Phys. A 435, 397–447 (1985). https://doi.org/10.1016/0375-9474(85)90471-3
M. Yamagami, K. Matsuyanagi, M. Matsuo, Symmetry-unrestricted Skyrme-Hartree-Fock-Bogoliubov calculations for exotic shapes in N=Z nuclei from 64Ge to84Mo. Nucl. Phys. A 693, 579–602 (2001). https://doi.org/10.1016/S0375-9474(01)00918-6
K. Kaneko, M. Hasegawa, T. Mizusaki, Shape transition and oblate-prolate coexistence in \(N=Z\)\(fpg\)-shell nuclei. Phys. Rev. C 70, 051301 (2004). https://doi.org/10.1103/PhysRevC.70.051301
A. Volya, Computational approaches to many-body dynamics of unstable nuclear systems, (2014), note in Proceedings of the International Conference ‘Nuclear Theory in the Supercomputing Era’, Khabarovsk, Russia. arXiv:1412.6335 [nucl-th]
M. Peshkin, A. Volya, V. Zelevinsky, Non-exponential and oscillatory decays in quantum mechanics. Europhys. Lett. 107, 40001 (2014). https://doi.org/10.1209/0295-5075/107/40001
M. Bender, R. Bernard, G. Bertsch et al., Future of nuclear fission theory. J. Phys. G 47, 113002 (2020). https://doi.org/10.1088/1361-6471/abab4f
C.A. Bertulani, M.S. Hussein, G. Verde, Blurred femtoscopy in two-proton decay. Phys. Lett. B 666, 86–90 (2008). https://doi.org/10.1016/j.physletb.2008.06.062
R.M. Id Betan, R. de la Madrid, The \({{\rm Gamow}}{{\rm -state~description~of~the~decay~energy~spectrum~of~neutron-unbound~} ^{25}{{\rm O}}}\). Nucl. Phys. A 970, 398–410 (2018). https://doi.org/10.1016/j.nuclphysa.2018.01.003
D.R. Thompson, M. Lemere, Y.C. Tang, Systematic investigation of scattering problems with the resonating-group method. Nucl. Phys. A 286, 53–66 (1977). https://doi.org/10.1016/0375-9474(77)90007-0
F.C. Barker, \({R}\)-matrix formulas for three-body decay widths. Phys. Rev. C 68, 054602 (2003). https://doi.org/10.1103/PhysRevC.68.054602
Z.Q. Zhang, Y.G. Ma, Measurements of momentum correlation and interaction parameters between antiprotons. Nucl. Sci. Tech. 27, 152 (2016). https://doi.org/10.1007/s41365-016-0147-x
B.S. Huang, Y.G. Ma, Two-proton momentum correlation from photodisintegration of \(\alpha\)-clustering light nuclei in the quasideuteron region. Phys. Rev. C 101, 034615 (2020). https://doi.org/10.1103/PhysRevC.101.034615
L. Shen, B.S. Huang, Y.G. Ma, Short-range correlations in the extended quantum molecular dynamics model. Phys. Rev. C 105, 014603 (2022). https://doi.org/10.1103/PhysRevC.105.014603
D. Kostyleva, I. Mukha, L. Acosta et al., Towards the limits of existence of nuclear structure: observation and first spectroscopy of the isotope \(^{31}\rm K\) by measuring its three-proton decay. Phys. Rev. Lett. 123, 092502 (2019). https://doi.org/10.1103/PhysRevLett.123.092502
D. H. Wilkinson (Ed), Isospin in nuclear physics (North Holland Pub. Co., 1970)
D.D. Warner, M.A. Bentley, P. Van Isacker, The role of isospin symmetry in collective nuclear structure. Nat. Phys. 2, 311–318 (2006). https://doi.org/10.1038/nphys291
Z. Kohley, T. Baumann, G. Christian et al., Three-body correlations in the ground-state decay of \(^{26}\rm O\). Phys. Rev. C 91, 034323 (2015). https://doi.org/10.1103/PhysRevC.91.034323
Y. Kondo, T. Nakamura, R. Tanaka et al., Nucleus \(^{26}\rm O\): a barely unbound system beyond the drip line. Phys. Rev. Lett. 116, 102503 (2016). https://doi.org/10.1103/PhysRevLett.116.102503
L.V. Grigorenko, I.G. Mukha, M.V. Zhukov, Lifetime and fragment correlations for the two-neutron decay of \(^{26}\rm O\) ground state. Phys. Rev. Lett. 111, 042501 (2013). https://doi.org/10.1103/PhysRevLett.111.042501
A. Adahchour, P. Descouvemont, Three-body continuum of \(^{26}\rm O\). Phys. Rev. C 96, 054319 (2017). https://doi.org/10.1103/PhysRevC.96.054319
J. Casal, Two-nucleon emitters within a pseudostate method: the case of \(^{6}{{\rm Be}}{~{\rm and}~ ^{16}{{\rm Be}}}\). Phys. Rev. C 97, 034613 (2018). https://doi.org/10.1103/PhysRevC.97.034613
L.V. Grigorenko, J.S. Vaagen, M.V. Zhukov, Exploring the manifestation and nature of a dineutron in two-neutron emission using a dynamical dineutron model. Phys. Rev. C 97, 034605 (2018). https://doi.org/10.1103/PhysRevC.97.034605
J.G. Li, N. Michel, W. Zuo et al., Unbound spectra of neutron-rich oxygen isotopes predicted by the Gamow shell model. Phys. Rev. C 103, 034305 (2021). https://doi.org/10.1103/PhysRevC.103.034305
L.V. Grigorenko, I.G. Mukha, C. Scheidenberger et al., Two-neutron radioactivity and four-nucleon emission from exotic nuclei. Phys. Rev. C 84, 021303 (2011). https://doi.org/10.1103/PhysRevC.84.021303
B. Alex Brown, The nuclear shell model towards the drip lines. arXiv:2204.06088 (2022)
M. Duer, T. Aumann, R. Gernhäuser et al., Observation of a correlated free four-neutron system. Nature 606, 678 (2022). https://doi.org/10.1038/s41586-022-04827-6
G.L. Sobotka, M. Piarulli, Observation of a correlated free four-neutron system. Nature 606, 656 (2022). https://doi.org/10.1038/d41586-022-01634-x
K. Kisamori, S. Shimoura, H. Miya et al., Candidate resonant tetraneutron state populated by the \(^{4}{{\rm He}}{(^{8}{{\rm He}}},^{8}{{\rm Be}})\) reaction. Phys. Rev. Lett. 116, 052501 (2016). https://doi.org/10.1103/PhysRevLett.116.052501
S.C. Pieper, Can modern nuclear hamiltonians tolerate a bound tetraneutron? Phys. Rev. Lett. 90, 252501 (2003). https://doi.org/10.1103/PhysRevLett.90.252501
K. Fossez, J. Rotureau, N. Michel et al., Can tetraneutron be a narrow resonance? Phys. Rev. Lett. 119, 032501 (2017). https://doi.org/10.1103/PhysRevLett.119.032501
A. Deltuva, Tetraneutron: rigorous continuum calculation. Phys. Lett. B 782, 238–241 (2018). https://doi.org/10.1016/j.physletb.2018.05.041
J.G. Li, N. Michel, B.S. Hu et al., Ab initio no-core Gamow shell-model calculations of multineutron systems. Phys. Rev. C 100, 054313 (2019). https://doi.org/10.1103/PhysRevC.100.054313
M.D. Higgins, C.H. Greene, A. Kievsky et al., Nonresonant density of states enhancement at low energies for three or four neutrons. Phys. Rev. Lett. 125, 052501 (2020). https://doi.org/10.1103/PhysRevLett.125.052501
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by Long Zhou and Si-Min Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Additional information
This work is partially supported by the National Natural Science Foundation of China (Nos. 12147101, 11925502, 11935001, 11961141003, 11890714), the National Key R&D Program of China (No. 2018YFA0404404), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB34030000), and the Shanghai Development Foundation for Science and Technology (No. 19ZR1403100).
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhou, L., Wang, SM., Fang, DQ. et al. Recent progress in two-proton radioactivity. NUCL SCI TECH 33, 105 (2022). https://doi.org/10.1007/s41365-022-01091-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41365-022-01091-1