Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Reconfigurable swarm robots for structural health monitoring: a brief review

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Autonomous monitoring of infrastructure systems offers a promising alternative to manual inspection techniques which are mostly tedious, expensive and prone to error. Robot-based autonomous monitoring systems not only provide higher precision, but they also allow frequent inspection of infrastructure systems at a much lower cost. Recent advancements in robotic systems have led to the development of reconfigurable swarm robots (RSR) that can change their shape and functionality dynamically, without any external intervention. RSR have the advantages of being modular, on-site reconfigurable, multifunctional, incrementally assemble-able, reusable, fault-tolerant, and even repairable on the orbit. Newly-developed reconfigurable robots are expected to bring a radical change in the prevailing structural health monitoring techniques, thus augmenting the efficiency, accuracy and affordability of inspection operations. This paper presents a holistic review of the previous studies and state-of-the-art technologies in the field of RSR, and argues that RSR offer great potential advantages from the perspective of monitoring and assessment of civil and mechanical systems. A roadmap for future research has also been outlined based on the limitations of the current methods and anticipated needs of future inspection systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adria, Oliver, Streich, Hermann, Hertzberg, Joachim, Augustin, Sankt: Dynamic replanning in uncertain environments for a sewer inspection robot. Int. J. Adv. Robot Syst. 1(1), 33–38 (2004)

    Article  Google Scholar 

  • Abdulla, A.S.A, Khalil, A.M.A., Al Shehhi, A.A.A.M., Karki, H.: Localization of a submersible mobile inspection platform in an oil storage tank. In: Proceedings of 7th International Symposium on Mechatronics and Its Applications (ISMA), pp. 1–6 (2010)

  • Alboul, L., Abdul-Rahman, H.S., Haynes, P.S., Penders, J., Tharin, J.: An approach to multi-robot site exploration based on principles of self-organisation. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6425 LNAI (PART 2), pp. 717–29 (2010). doi:10.1007/978-3-642-16587-0_65

  • Bar-cohen, Y., Backes, P.: Scanning large aerospace structures using open-architecture crawlers. In: National Space and Missile Materials Symposium, pp. 1–9 (2000)

  • Barca, J.C., Sekercioglu, Y.A.: Swarm robotics reviewed. Robotica, 1–15 (2012). doi:10.1017/S026357471200032X

  • Bodenmann, A., Thornton, B., Ura, T., Painumgal, U.V.: Visual mapping of internal pipe walls using sparse features for application on board autonomous underwater vehicles. In: Proceedings of OCEANS 2009—EUROPE, pp 1–8 (2009)

  • Bojinov, H., Casal, A., Hogg, T.: Multiagent control of self-reconfigurable robots. In: MultiAgent Systems, 2000. Proceedings. Fourth International Conference, pp. 143–150. IEEE (2000)

  • Bouchard, S.: LineScout robot climbs on live power lines to inspect them. In: IEEE Spectrum Online, no. Carpi 2010: 2016 (2010). http://spectrum.ieee.org/automaton/robotics/industrial-robots/linescout-robot-climbs-on-live-power-lines-toinspect-them

  • Brambilla, M., Ferrante, E., Birattari, M.: Swarm Robotics: a review from the swarm engineering perspective IRIDIA—technical report series technical report no. Swarm Intell. 7(1), 1–41 (2012). doi:10.1007/s11721-012-0075-2

    Article  Google Scholar 

  • Brambilla, Manuele, Ferrante, Eliseo, Birattari, Mauro, Dorigo, Marco: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). doi:10.1007/s11721-012-0075-2

    Article  Google Scholar 

  • Brandt, D., Christensen, D.J., Lund, H.H.: ATRON robots: versatility from self-reconfigurable modules. In: International Conference on Mechatronics and Automation, IEEE (2007)

  • Castano, A., Chokkalingam, R., Will, P.: Autonomous and Self-Sufficient CONRO Modules for Reconfigurable Robots. In: Proc. 5th Int’l Symp. Distributed Autonomous Robotic Systems, pp. 155–164. Springer-Verlag, Knoxville (2000)

  • Castano, A., Shen, W.M., Will, P.: CONRO: towards miniature self-sufficient metamorphic robots. Auton. Robot. 8, 309–324 (2000)

    Article  Google Scholar 

  • Castano, A., Behar, A., Will, P.M.: The Conro modules for reconfigurable robots. IEEE/ASME Trans. Mechatron. 7(4), 403–409 (2002)

    Article  Google Scholar 

  • Chiu, H., Rubenstein, M., Shen, W.-M.: Multifunctional SuperBot with rolling track configuration. In: Proc. 2007 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, San Diego. IROS 2007 Workshop on Self-Reconfigurable Robots, Systems & Applications (2007)

  • Chotiprayanakul, P., Liu, D.K., Dissanayake, G.: Human-robot-environment interaction interface for robotic grit-blasting of complex steel bridges. Autom. Constr. 27, 11–23 (2012)

    Article  Google Scholar 

  • Cho, K.H., Kim, H.M., Jin, Y.H., Liu, F., Moon, H., Koo, J.C., Choi, H.R.: Inspection robot for hanger cable of suspension bridge: mechanism design and analysis. IEEE/ASME Trans. Mechatron. 18(6), 1665–1674 (2013)

    Article  Google Scholar 

  • Christensen, D.J.: Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot. In: Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference, pp. 2539–2545. IEEE (2006)

  • Churchill, D.L., Hamel, M.J., Townsend, C.P., Arms, S.W.: Strain energy harvesting for wireless sensor networks. Smart Mater. Struct. 5055, 319–327 (2003)

    Google Scholar 

  • Clark, R.A., Punzo, G., MacLeod, C.N., Dobie, G., Summan, R., Bolton, G., Macdonald, M.: Autonomous and scalable control for remote inspection with multiple aerial vehicles. Robot. Auton. Syst. 87, 258–268 (2017)

    Article  Google Scholar 

  • Collins, T., Shen, W.-M.: PASO: an integrated, scalable pso-based optimization framework for hyper-redundant manipulator path planning and inverse kinematics. In: ISI Tech Report (2016)

  • Collins, T., Shen, W.-M.: Integrated and adaptive locomotion and manipulation for self-reconfigurable robots. In: 18th towards autonomous robotic systems (Taros) conference, UK (2017)

  • Conte, G., Zanoli, S., Perdon, A.M., Tascini, G., Zingaretti, P.: Automatic analysis of visual data in submarine pipeline inspection. Proc. MTS/IEEE Oceans 3, 1213–1219 (1996)

    Google Scholar 

  • Corley, A.M.: Robotic tightrope walkers for high-voltage lines. IEEE Spectrum Online, pp. 1–2 (2009). http://spectrum.ieee.org/robotics/industrialrobots/robotic-tightrope-walkers-for-highvoltage-lines

  • Davey, J., Kwok, N., Yim, M.: Emulating self-reconfigurable robots-design of the SMORES system. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2012)

  • Desai, J.P., Kumar, V., Ostrowski, J.P.: Control of changes in formation for a team of mobile robots. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), pp 1556–1561 (1999). doi:10.1109/ROBOT.1999.772581

  • Diller, E., Pawashe, C., Floyd, S., Sitti, M.: Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int. J. Robot. Res. 30(14), 1667–1680 (2011)

    Article  Google Scholar 

  • Dorigo, M., Roosevelt, A.F.D.: Swarm Robotics. Special Issue. Auton. Robots 3342 (2005). doi:10.1007/b105069

  • Dorigo, M., Trianni, V.: Emergent collective decisions in a swarm of robots. In: Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE, pp. 241–48 (2005)

  • Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20(4), 60–71 (2013). doi:10.1109/MRA.2013.2252996

    Article  Google Scholar 

  • Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T.H., Baldassarre, G., Nolfi, S., et al.: Evolving self-organizing behaviors for a Swarm-Bot. Auton. Robots 17(2–3), 223–245 (2004). doi:10.1023/B:AURO.0000033973.24945.f3

    Article  Google Scholar 

  • Duan, Y., Liu, Q., XinHe, X.: Application of reinforcement learning in robot soccer. Eng. Appl. Artif. Intell. 20(7), 936–950 (2007). doi:10.1016/j.engappai.2007.01.003

    Article  Google Scholar 

  • Ducatelle, F., Di Caro, G.A., Pinciroli, C., Mondada, F., Gambardella, L.: Communication Assisted Navigation in Robotic Swarms: Self-Organization and Cooperation. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4981–88 (2011). doi:10.1109/IROS.2011.6048110

  • Erico, G.: Japanese snake robot goes where humans can’t. IEEE Spectrum Online, 2016 (2010). http://spectrum.ieee.org/automaton/robotics/industrialrobots/japanese-snake-robot-goes-where-humans-cant

  • Erol, S., Ec, I.: Aggregation in swarm robotic systems: evolution and probabilistic control. Middle East 15(2), 199–225 (2007)

    Google Scholar 

  • Fischer, W., Siegwart, R.: Inspection system for very thin and fragile surfaces, based on a pair of wall climbing robots with magnetic wheels. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1216–1221 (2007)

  • Fukuda, T., Nakagawa, S.: Dynamically reconfigurable robotic system. In: Robotics and Automation, 1988. Proceedings., 1988 IEEE International Conference, pp. 1581–1586. IEEE (1988)

  • Fukuda, T., Kawauchi, Y., Hara, F.: A study on a dynamically reconfigurable robotic system: self-organizing distributed intelligence system of learning and reasoning for cellular robotics “CEBOT”. JSME Int. J. Ser. C Dyn. Control Robot. Des. Manuf. 37(1), 162–171 (1994)

  • Fumagalli, M., Naldi, R., Macchelli, A., Carloni, R., Stramigioli, S., Marconi, L.: Modeling and control of a flying robot for contact inspection. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference, pp. 3532–3537. IEEE (2012)

  • Galloway, K.C., Haynes, G.C., Ilhan, B.D., Johnson, A.M., Knopf, R., Lynch, G.A., Plotnick, B.N., White, M. and Koditschek, D.E.: X-RHex: A highly mobile hexapedal robot for sensorimotor tasks (2010)

  • Garcia, R.F.M., Hiller, J.D., Stoy, K., Lipson, H.: A vacuum-based bonding mechanism for modular robotics. IEEE Trans. Robot. 27(5), 876–890 (2011)

    Article  Google Scholar 

  • Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adapt. Behav. 17(2009), 109–133 (2009). doi:10.1177/1059712309103430

    Article  Google Scholar 

  • Garro, B., Sossa, H., Vazquez, R.A.: Evolving ant colony system for optimizing path planning in mobile robots. In: Electronics, Robotics and , pp. 444–49 (2007). doi:10.1109/CERMA.2007.65

  • Gillies, A.G., Fearing, R.S.: A micromolded connector for reconfigurable millirobots. J. Micromech. Microeng. 20(10), 105011 (2010)

    Article  Google Scholar 

  • Groß, R., Mondada, F., Dorigo, M.: Transport of an object by six pre-attached robots interacting via physical links. In: Proceedings—IEEE International Conference on Robotics and Automation, pp. 1317–1323 (2006). doi:10.1109/ROBOT.2006.1641891

  • Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter. Computer 38(6), 99–101 (2005)

    Article  Google Scholar 

  • Hayes, A.T., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure: off-line optimization and demonstration with real robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), pp. 1–7 (2002). doi:10.1109/ROBOT.2002.1014331

  • Hettiarachchi, S., Spears, W.M.: Distributed adaptive swarm for obstacle avoidance. Int. J. Intell. Comput. Cybern. 2(4), 644–671 (2009). doi:10.1108/17563780911005827

    Article  MathSciNet  MATH  Google Scholar 

  • Hofmeister, M., Liebsch, M., Zell, A.: visual self-localization for small mobile robots with weighted gradient orientation histograms. In: 40th International Symposium on Robotics (ISR), pp. 87–91 (2009). http://www.cogsys.cs.uni-tuebingen.de/publikationen/2009/hofmeister2009isr_vselflocalization.pdf

  • Hou, F., Ranasinghe, N., Salemi, B., Shen, W.-M.: Remotely-controlled autonomous tricyclebot locomotion via SuperBot. In: Proc. 2007 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, San Diego. IROS 2007 Workshop on Self-Reconfigurable Robots, Systems & Applications (2007)

  • Howard, A., Mataric, M.J., Gaurav, S.C.: An incremental self-deployment algorithm for mobile sensor networks. Auton. Robots 13(2), 113–126 (2002)

    Article  MATH  Google Scholar 

  • Jing, G., Tosun, T., Yim, M., Kress-Gazit, H.: An end-to-end system for accomplishing tasks with modular robots. In: Proceedings of robotics: science and systems (2016)

  • Johnson, A.M., Wright, C., Tesch, M., Lipkin, K., Choset, H.: A novel architecture for modular snake robots. Tech. report CMU-RI-TR-11-29, Robotics Institute, Carnegie Mellon University (2011)

  • Jorgensen, M.W., Ostergaard, E.H., Lund, H.H.: Modular ATRON: Modules for a self-reconfigurable robot. In: Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference, vol. 2, pp. 2068–2073. IEEE (2004)

  • Kernbach, S., Meister, E., Schlachter, F., Jebens, K., Szymanski, M., Liedke, J., Laneri, D., et al.: Symbiotic Robot Organisms: REPLICATOR and SYMBRION Projects. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp. 62–69 (2008). doi:10.1145/1774674.1774685

  • Kiehn, O., Butt, S.J.: Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog. Neurobiol. 70(4), 34761 (2003). doi:10.1016/S0301-0082(03)00091-1. (PMID 12963092)

    Article  Google Scholar 

  • Kim, H.M., Cho, K.H., Jin, Y.H., Liu, F., Koo, J.C., Choi, H.R.: Development of cable climbing robot for maintenance of suspension bridges. In: Automation Science and Engineering (CASE), 2012 IEEE International Conference, pp. 606–611. IEEE (2012)

  • Kirby, B.A., Campbell, J.D., Hoburg, J.F., Mowry, T.C., Pillai, P., Goldstein, S.C.: A modular robotic system using magnetic force effectors. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, pp 2787–2793. IEEE Press (2007)

  • Kirchner, Frank, Hertzberg, Joachim, Augustin, Sankt: A prototype study of an autonomous robot platform for sewerage system maintenance. Auton. Robots 331, 319–331 (1997)

    Article  Google Scholar 

  • Kostin, G.V., Chernousko, F.L., Bolotnik, N.N., Pfeiffer, F.: Regular motions of a tube-crawling robot: simulation and optimization. In: Proceedings of the First Workshop on Robot Motion and Control (RoMoCo), pp. 45–50 (1999)

  • Karagozler, M.E., Goldstein, S.C., Reid, J.R.: Stress-driven mems assembly + electrostatic forces = 1 mm diameter robot. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference, pp. 2763–2769. IEEE (2009)

  • Kurokawa, H., et al.: Distributed self-reconfiguration of M-TRAN III modular robotic system. Int. J. Robot. Res. 27(3-4), 373–386 (2008)

  • La, H.M., Lim, R.S., Basily, B., Gucunski, N., Yi, J., Maher, A., Parvardeh, H.: Autonomous robotic system for high-efficiency non-destructive bridge deck inspection and evaluation. In: Automation Science and Engineering (CASE), 2013 IEEE International Conference, pp. 1053–1058. IEEE (2013)

  • La, H.M., Lim, R.S., Basily, B.B., Gucunski, N., Yi, J., Maher, A., Romero, F.A., Parvardeh, H.: Mechatronic systems design for an autonomous robotic system for high-efficiency bridge deck inspection and evaluation. IEEE/ASME Trans. Mechatron. 18(6), 1655–1664 (2013)

    Article  Google Scholar 

  • Lee, S., Lee, B.: Structural health monitoring robot using paired structured light. In: IEEE International Symposium on Industrial Electronics (ISlE 2009), no. ISlE, pp. 396–401 (2009)

  • Li, Z., Zhu, J., He, C., Wang, W.: A new pipe cleaning and inspection robot with active pipe-diameter adaptability based on ATmega64. In: Electronic Measurement & Instruments, 2009. ICEMI’09. 9th International Conference, pp. 2–616. IEEE (2009)

  • Li, S., Yuan, J., Nigl, F., Lipson, H.: A cuboctahedron module for a reconfigurable robot. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference, pp. 535–541. IEEE (2010)

  • Liekna, Aleksis, Grundspenkis, Janis: Towards practical application of swarm robotics: overview of swarm tasks. Eng. Rural Dev. 13, 271–277 (2014)

    Google Scholar 

  • Lyder, A., Garcia, R.F.M., Stoy, K.: Mechanical design of odin, an extendable heterogeneous deformable modular robot. In: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference, pp. 883–888. IEEE (2008)

  • Luk, B.L., White, T.S., Cooke, D.S., Hewer, N.D., Hazel, G., Chen, S., Berkeley Centre and Gloucestershire Gl.: Climbing Service robot for duct inspection and maintenance applications in a nuclear reactor. In: Proceedings of the 32nd ISR(International Symposium on Robotics), pp. 19–21 (2001)

  • Maxim, P.M., Spears, W.M., Spears, D.F.: Robotic Chain Formations. In: IFAC Proceedings Volumes (IFAC-Papers Online), vol. 42. IFAC (2009). doi:10.3182/20091006-3-US-4006.0012

  • Mazumdar, A., Asada, H.H.: An underactuated, magnetic-foot robot for steel bridge inspection. J. Mech. Robot. 2(3), 031007 (2010)

    Article  Google Scholar 

  • McLurkin, J., Smith, Jennifer: Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. Distrib. Auton. Robot. Syst. 6, 399–408 (2007). doi:10.1007/978-4-431-35873-2_39

    MATH  Google Scholar 

  • Meister, E., Gutenkunst, A., Levi, P.: Dynamics and control of modular and self-reconfigurable robotic systems. Int. J. Adv. Intell. Syst. 6(1 & 2), 2013 (2013)

    Google Scholar 

  • Meng, Y., Zhang, Y., Sampath, A., Jin, Y., Sendhoff, B.: Cross-ball: a new morphogenetic self-reconfigurable modular robot. In: Robotics and Automation (ICRA), 2011 IEEE International Conference, pp. 267–272. IEEE (2011)

  • Mondada, F., Bonani, M., Magnenat, S., Guignard, A., Floreano, D., Groen, F., Amato, N., Bonari, A., Yoshida, E., Kröse, B.: Physical connections and cooperation in swarm robotics. In: 8th Conference on Intelligent Autonomous Systems (IAS8), No. LIS-CONF-2004-001, pp. 53–60 (2004)

  • Montes De Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo, M.: Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making majority-rule opinion dynamics with differential latency: a mechanism for. In: IRIDIA—Technical Report Series (2010)

  • Mori, Makoto, Hirose, Shigeo: Locomotion of 3D snake-like robots; shifting and rolling control of active cord mechanism ACM-R3. J. Robot. Mechatron. 18, 521–528 (2006)

    Article  Google Scholar 

  • Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S.: A 3-D self-reconfigurable structure. In: Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference, vol. 1, pp. 432–439. IEEE (1998)

  • Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robot. Autom. Mag. 14(1), 71–78 (2007)

    Article  Google Scholar 

  • Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference, pp. 441–448. IEEE (1994)

  • Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., Kokaji, S.: Self-repairing mechanical systems. Auton. Robots 10(1), 7–21 (2001)

    Article  MATH  Google Scholar 

  • Murata, S., et al.: M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)

  • Myung, H., Wang, Y., Kang, S.-C., Chen, X.: Survey on robotics and automation technologies for civil infrastructure. Smart Struct. Syst. 13(6), 891–899 (2014)

    Article  Google Scholar 

  • Nayyerloo, M., Chen, X., Wang, W., Chase, J.G.: Cable-climbing robots for power transmission lines inspection. In: Mobile Robots—State of the Art in Land, Sea, Air, and Collaborative Missions, InTech, pp. 63–84 (2009)

  • Nejadfard, A., Moradi, H., Ahmadabadi, M.N.: A multi-robot system for dome inspection and maintenance: concept and stability analysis. In: Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference, pp. 853–858. IEEE (2011)

  • Nilsson, M.: Essential properties of connectors for self-reconfiguring modular robots. In: Proceedings of the Workshop on Reconfigurable Robots, IEEE International Conference on Robotics and Automation, ICRA 2001 (2001)

  • Nilsson, M.: Connectors for self-reconfiguring robots. IEEE/ASME Trans. Mechatron. 7(4), 473–474 (2002)

    Article  Google Scholar 

  • Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: self-organized strategies to find your way home. Swarm Intell. 2(1), 1–23 (2008). doi:10.1007/s11721-007-0009-6

    Article  Google Scholar 

  • Østergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the ATRON lattice-based self-reconfigurable robot. Auton. Robots 21(2), 165–183 (2006)

    Article  Google Scholar 

  • Pagano, D., Liu, D.: An approach for real-time motion planning of an inchworm robot in complex steel bridge environments. Robotica 35(6), 1280–1309 (2017)

    Article  Google Scholar 

  • Paul, G., Webb, S., Liu, D., Dissanayake, G.: Autonomous robot manipulator-based exploration and mapping system for bridge maintenance. Robot. Auton. Syst. 59(7), 543–554 (2011)

    Article  Google Scholar 

  • Pierce, S.G., Punzo, G., Dobie, G., Summan, R., Macleod, C.N., McInnes, C., Biggs, J., MacDonald, M., Bennet, D.: Reconfigurable robotic platforms for structural health monitoring. Reconfigurable robotic platforms for structural health monitoring. In: 6th European Workshop on Structural Health Monitoring & 1st European Conference of the Prognostics and Health Management (PHM) Society (2012)

  • Pratt, K.S, Murphy, R.R., Burke, J.L.: Use of tethered small unmanned aerial system at Berkman Plaza II collapse. In: Proceedings of IEEE International Workshop on Safety, Security and Rescue Robotics (SSRR 2008), pp. 134–39 (2008)

  • Qiao, J., Shang, J., Goldenberg, A.: Development of inchworm in-pipe robot based on self-locking mechanism. IEEE/ASME Trans. Mechatron. 18(2), 799–806 (2013)

    Article  Google Scholar 

  • Rigatos, G.G.: Distributed gradient and particle swarm optimization for multi-robot motion planning. Robotica 26(3), 357–370 (2008). doi:10.1017/S0263574707004080

    Article  Google Scholar 

  • Romero, J.: Bridge robot moonwalks on magnets. In: IEEE Spectrum Online (2010). http://spectrum.ieee.org/video/robotics/industrial-robots/bridge-robot-moonwalks-on-magnets

  • Roundy, S.J.: Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. The University of California, Berkeley (2000)

  • Rubenstein, M., Shen, W.-M.: Scalable self-assembly and self-repair in a collective of robots. In: Proc. 2009 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, St. Louis (2009)

  • Rubenstein, M., Shen, W.-M.: Automatic scalable size selection for the shape of a distributed robotic collective In: Proc. 2010 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Taipei (2010)

  • Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)

    Article  Google Scholar 

  • Rus, D., Vona, M.: Crystalline robots: self-reconfiguration with compressible unit modules. Auton. Robots 10(1), 107–124 (2001)

    Article  MATH  Google Scholar 

  • Ryu, B., Ranasinghe, N., Shen, W.-M., Turck, K., Muccio, M.: BioAIR: bio-inspired airborne infrastructure reconfiguration. In: Proc. 2015 IEEE Intl. Conf. on Military Communications, Tampa (2015)

  • Sahin, E., Spears, W.M., Windfield, A.F.T.: Swarm robotics (2007). doi:10.1007/978-3-540-71541-2

  • Salemi, B., Will, P., Shen, W.-M.: Autonomous discovery and functional response to topology change in self-reconfigurable robots. In: International Conference on Intelligent Robots and Systems. September–October 2004, Sendai (2004)

  • Salemi, B., Moll, M., Shen, W.-M.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In Proc. 2006 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Beijing (2006)

  • Schweikardt, E.: Modular robotics studio. In: Proceedings of the fifth international conference on Tangible, embedded, and embodied interaction. ACM (2011)

  • Shen, W.M., Salemi, B., Will, P.: Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Trans. Robot. Autom. 18(5), 700–712 (2002)

    Article  Google Scholar 

  • Shen, W.M., Adibi, J., Adobbati, R., Cho, B., Erdem, A., Moradi, H., Salemi, B., Tejada, S.: Building integrated mobile robots for soccer competition. In: Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference, vol. 3, pp. 2613–2618. IEEE (1998)

  • Shen, W.M., Will, P.: Docking in self-reconfigurable robots. In: Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference, vol. 2, pp. 1049–1054. IEEE (2001)

  • Shen, W.-M., Will, P., Galstyan, A., Chuong, C.-M.: Hormone-inspired self-organization and distributed control of robotic swarms. Auton. Robots. 17(1), 93–105 (2004)

    Article  Google Scholar 

  • Shen, W.-M., Kovac, R., Rubenstein, M.: SINGO: a single-end-operative and genderless connector for self-reconfiguration, self-assembly and self-healing. In: 2009 International Conference on Robots and Automation, Kobe, Japan, 12–17 May, pp 4253–4258. IEEE Press (2009)

  • Sheng, W., Chen, H., Xi, N.: Navigating a miniature crawler robot for engineered structure inspection. IEEE Trans. Autom. Sci. Eng. 5(2), 368–373 (2008)

    Article  Google Scholar 

  • Shimizu, M., Ishiguro, A., Kawakatsu, T.: Slimebot: a modular robot that exploits emergent phenomena. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference, pp. 2982–2987. IEEE (2005)

  • Shiu, M.-C., et al.: Design of the Octabot self-reconfigurable robot. In: IFAC Proceedings, vol. 41.2, pp. 15630–15635 (2008)

  • Siegel, M.: Remote and automated inspection: status and prospects. In: Proceedings 1st Joint DOD/FAA/NASA Conference Aging Aircraft (1997)

  • Sodano, Henry A., Inman, Daniel J., Park, Gyuhae: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36(3), 197–205 (2004). doi:10.1177/0583102404043275

    Article  Google Scholar 

  • Soysal, O., Şahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Proceedings—2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 335–342 (2005). doi:10.1109/SIS.2005.1501639

  • Sproewitz, A., Asadpour, M., Bourquin, Y., Ijspeert, A.J.: An active connection mechanism for modular self-reconfigurable robotic systems based on physical latching. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference, pp. 3508–3513. IEEE (2008)

  • Stoy, K., Shen, W.M., Will, P.M.: Using role-based control to produce locomotion in chain-type self-reconfigurable robots. IEEE/ASME Trans. Mechatron. 7(4), 410–417 (2002)

    Article  Google Scholar 

  • Stoy, K., Brandt, D., Christensen, D.J., Brandt, D.: Self-reconfigurable robots: an introduction. Mit Press, Cambridge (2010)

  • Suh, J.W., Homans, S.B., Yim, M.: Telecubes: mechanical design of a module for self-reconfigurable robotics. In: Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference, vol. 4, pp. 4095–4101. IEEE (2002)

  • Tang, S., et al.: The UBot modules for self-reconfigurable robot. In: Reconfigurable Mechanisms and Robots, 2009. ReMAR 2009. ASME/IFToMM International Conference. IEEE (2009)

  • The ARIA Project. http://aria.ri.cmu.edu/. Accessed 2 Apr 2017

  • To, W.K., Paul, G., Kwok, N.M., Liu, D.: An efficient trajectory planning approach for autonomous robots in complex bridge environments. Int. J. Comput. Aided Eng. Technol. 1(2), 185–208 (2009)

    Article  Google Scholar 

  • Tolley, M.T., Krishnan, M., Erickson, D., Lipson, H.: Dynamically programmable fluidic assembly. Appl. Phys. Lett. 93(25), 254105 (2008)

    Article  Google Scholar 

  • Tolley, M.T., Kalontarov, M., Neubert, J., Erickson, D., Lipson, H.: Stochastic modular robotic systems: a study of fluidic assembly strategies. IEEE Trans. Rob. 26(3), 518–530 (2010)

    Article  Google Scholar 

  • Trianni, V., Tuci, E., Ampatzis, C., Dorigo, M.: Evolutionary swarm robotics: a theoretical and methodological itinerary from individual neuro-controllers to collective behaviours. In: The Horizons of Evolutionary Robotics, pp. 153–78 (2014). http://mitpress.mit.edu/books/horizons-evolutionary-robotics. http://laral.istc.cnr.it/Pubblicazioni/English/Journals/2010trianni-etal-her.pdf

  • Trianni, V., Nolfi, S., Dorigo, M.: Cooperative hole avoidance in a swarm-bot to appear in robotics and autonomous systems cooperative hole avoidance in a swarm-bot. In: IRIDIA—Technical Report Series 1 (October), pp. 1–12 (2004)

  • Ünsal, C., Kiliççöte, H., Khosla, P.K.: A modular self-reconfigurable bipartite robotic system: implementation and motion planning. Auton. Robots 10(1), 23–40 (2001)

    Article  MATH  Google Scholar 

  • Van Den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning in dynamic environments. In: Proceedings—IEEE International Conference on Robotics and Automation, pp. 2366–2371 (2006). doi:10.1109/ROBOT.2006.1642056

  • Wang, Z., Hirata, Y., Kosuge, K.: Control a rigid caging formation for cooperative object transportation by multiple mobile robots. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04, vol. 2, pp. 1580–1585 (2004). doi:10.1109/ROBOT.2004.1308049

  • Wei, H., Chen, Y., Tan, J., Wang, T.: Sambot: a self-assembly modular robot system. IEEE/ASME Trans. Mechatron. 16(4), 745–757 (2011)

    Article  Google Scholar 

  • Weller, M.P., Kirby, B.T., Brown, H.B., Gross, M.D., Goldstein, S.C.: Design of prismatic cube modules for convex corner traversal in 3D. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 11–15 Oct, pp 1490–1495. IEEE Press (2009)

  • Will, P.M., Castaño, A., Shen, W.M.: Robot modularity for self-reconfiguration. In: Photonics East’99, pp. 236–245. International Society for Optics and Photonics (1999)

  • Wu, C., Wang, X., Zhuang, G., Zhao, M., Ge, T.: Motion of an underwater self-reconfigurable robot with tree-like configurations. J. Shanghai Jiaotong Univ. (Science) 18, 598–605 (2013)

    Article  Google Scholar 

  • Xu, F., Wang, X., Xie, Q.: Obstacle crossing ability of a new wheel-based cable climbing robot. In: Mechatronics and Machine Vision in Practice, 2008. M2VIP 2008. 15th International Conference, pp. 545–549. IEEE (2008)

  • Xu, F., Wang, X., Wang, L.: Cable inspection robot for cable-stayed bridges: design, analysis, and application. J. Field Robot. 28(3), 441–459 (2011)

    Article  Google Scholar 

  • Yamada, S., Saito, J.: Adaptive action selection without explicit communication for multirobot box-pushing. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 31(3), 398–404 (2001). doi:10.1109/5326.971668

    Article  Google Scholar 

  • Yim, M.: Locomotion with a unit-modular reconfigurable robot (Ph.D. Thesis), Department of Mechanical Engineering. Stanford University (1994)

  • Yim, M., Duff, D.G., Roufas, K.D.: PolyBot: a modular reconfigurable robot. In: Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference, vol. 1, pp. 514–520. IEEE (2000)

  • Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., Homans, S.: Modular reconfigurable robots in space applications. Auton. Robot. 14(2), 225–237 (2003)

    Article  MATH  Google Scholar 

  • Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    Article  Google Scholar 

  • Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron. 7(4), 442–451 (2002)

    Article  Google Scholar 

  • Yinka-Banjo, C., Osunmakinde, I. O., Bagula, A.: Cooperative behaviours with swarm intelligence in multirobot systems for safety inspections in underground terrains. Math. Probl. Eng. 2014(4), 1–20 (2014). doi:10.1155/2014/678210

    Google Scholar 

  • Yogeswaran, M., Ponnambalam, S.G.: Swarm robotics: an extensive research review. In: Advanced Knowledge Application in Practice (2010)

  • Yu, S.N., Jang, J.H., Han, C.S.: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Autom. Constr. 16(3), 255–261 (2007)

    Article  Google Scholar 

  • Yuan, J., Wu, X., Kang, Y., Ben, A.: Research on reconfigurable robot technology for cable maintenance of cable-stayed bridges in-service. In: Mechanic Automation and Control Engineering (MACE), 2010 International Conference, pp. 1019–1022. IEEE (2010)

  • Yun, S.K., Rus, D.: Self assembly of modular manipulators with active and passive modules. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference, pp. 1477–1482. IEEE (2008)

  • Zhang, H., et al.: Development of a low-cost flexible modular robot GZ-I. In: 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE (2008)

  • Zhong, M., Guo, W., Li, M.-T., Xu, J.-A.: Tanbot: a mobile self-reconfigurable robot enhanced with embedded positioning module. In: 2008 IEEE Workshop on Advanced robotics and Its Social Impacts (2008)

  • Zhou, H., Hirose, M., Greenwood, W., Xiao, Y., Lynch, J., Zekkos, D., Kamat, V.: Demonstration of UAV deployment and control of mobile wireless sensing networks for modal analysis of structures. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, pp. 98031X–98031X. International Society for Optics and Photonics (2016)

  • Zhu, D., Yi, X., Wang, Y., Lee, K.M., Guo, J.: A mobile sensing system for structural health monitoring: design and validation. Smart Mater. Struct. 19(5), 055011 (2010)

    Article  Google Scholar 

  • Zhu, D., Guo, J., Wang, Y., Lee, K-M.: A flexure-based mobile sensing node for the health monitoring of steel structures. In: Proceedings of 2011 NSF Engineering Research and Innovation Conference (2011)

  • Zykov, V., Chan, A., Lipson, H.: Molecubes: an open-source modular robotics kit. In: IROS-2007 Self-Reconfigurable Robotics Workshop, pp. 3–6 (2007)

  • Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Robotics: self-reproducing machines. Nature 435(7039), 163–164 (2005)

    Article  Google Scholar 

  • Zykov, V., Lipson, H.: Fluidic stochastic modular robotics: revisiting the system design. In: Proceedings of the Robotics Science and Systems Workshop on Self-Reconfigurable Modular Robots, Philadelphia (2006)

Download references

Acknowledgements

This study was supported in part by Qatar National Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanshahi, M.R., Shen, WM., Mondal, T.G. et al. Reconfigurable swarm robots for structural health monitoring: a brief review. Int J Intell Robot Appl 1, 287–305 (2017). https://doi.org/10.1007/s41315-017-0024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-017-0024-8

Keywords

Navigation