Abstract
Sentiment analysis, a transformative force in natural language processing, revolutionizes diverse fields such as business, social media, healthcare, and disaster response. This review delves into the intricate landscape of sentiment analysis, exploring its significance, challenges, and evolving methodologies. We examine crucial aspects like dataset selection, algorithm choice, language considerations, and emerging sentiment tasks. The suitability of established datasets (e.g., IMDB Movie Reviews, Twitter Sentiment Dataset) and deep learning techniques (e.g., BERT) for sentiment analysis is explored. While sentiment analysis has made significant strides, it faces challenges such as deciphering sarcasm and irony, ensuring ethical use, and adapting to new domains. We emphasize the dynamic nature of sentiment analysis, encouraging further research to unlock the nuances of human sentiment expression and promote responsible and impactful applications across industries and languages.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.
References
Zhang, W., Xu, M., Jiang, Q.: Opinion mining and sentiment analysis in social media: Challenges and applications. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 536–548. Springer, Berlin (2018)
Pang, B., Lee, L.: Opinion mining and sentiment analysis, Foundations and Trends® in Information Retrieval: 2(1–2), 1-135. https://doi.org/10.1561/1500000011
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-Based Methods for Sentiment Analysis (2011). http://direct.mit.edu/coli/article-pdf/37/2/267/1798865/coli_a_00049.pdf
Salur, M.U., Aydin, I.: A novel hybrid deep learning model for sentiment classification. IEEE Access 8, 58080–58093 (2020). https://doi.org/10.1109/ACCESS.2020.2982538
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding (2018). https://doi.org/10.48550/arXiv.1810.04805
Daniel Ruby.: Twitter Statistics: New Trends, Figures & Data. Demand Sage (2022).
Simon Kemp.: Facebook Statistics and Trends, Datareportal
Tul, Q., et al.: Sentiment analysis using deep learning techniques: a review. Int. J. Adv. Comput. Sci. Appl.Comput. Sci. Appl. (2017). https://doi.org/10.14569/ijacsa.2017.080657
Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. WIREs Data Min. Knowl. Discov. (2018). https://doi.org/10.1002/widm.1253
Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowl. Based Syst. 89, 14–46 (2015). https://doi.org/10.1016/j.knosys.2015.06.015
Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Mining Text Data. Springer US, Boston, pp. 415–463 (2012). https://doi.org/10.1007/978-1-4614-3223-4_13
Islam, Md.S., et al.: Challenges and future in deep learning for sentiment analysis: a comprehensive review and a proposed novel hybrid approach. Artif. Intell. Rev. Intell. Rev. 57(3), 62 (2024). https://doi.org/10.1007/s10462-023-10651-9
Elsa, J., Koraye, J.: Deep learning techniques for natural language processing: recent developments (2024). https://easychair.org/publications/preprint_download/FPbH
Dang, N.C., Moreno-García, M.N., De la Prieta, F.: Sentiment analysis based on deep learning: a comparative study. Electronics (Basel) 9(3), 483 (2020). https://doi.org/10.3390/electronics9030483
Prabha, M.I., Umarani Srikanth, G.: Survey of sentiment analysis using deep learning techniques. In: 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT), pp. 1–9 (2019). https://doi.org/10.1109/ICIICT1.2019.8741438
Yadav, A., Vishwakarma, D.K.: Sentiment analysis using deep learning architectures: a review. Artif. Intell. Rev.. Intell. Rev. 53(6), 4335–4385 (2020). https://doi.org/10.1007/s10462-019-09794-5
Ain, Q.T., et al.: Sentiment analysis using deep learning techniques: a review. Int. J. Adv. Comput. Sci. Appl.Comput. Sci. Appl. (2017). https://doi.org/10.14569/IJACSA.2017.080657
Mäntylä, M.V., Graziotin, D., Kuutila, M.: The evolution of sentiment analysis—a review of research topics venues and top cited papers. Comput. Sci. Rev. 27, 16–32 (2018). https://doi.org/10.1016/j.cosrev.2017.10.002
Dolianiti, F.S., Iakovakis, D., Dias, S.B., Hadjileontiadou, S., Diniz, J.A., Hadjileontiadis, L.: Sentiment analysis techniques and applications in education: a survey. In: Communications in Computer and Information Science, pp. 412–427. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-20954-4_31
Shah, P.V., Swaminarayan, P.R.: Sentiment analysis—an evaluation of the sentiment of the people: a survey. In: Kotecha, K., Piuri, V., Shah, H.N., Patel, R. (eds.) Data Science and Intelligent Applications, pp. 53–61. Springer, Singapore (2021)
Behdenna, S., Barigou, F., Belalem, G.: Document level sentiment analysis: a survey. EAI Endors. Trans. Context-Aware Syst. Appl. 4(13), e2–e2 (2018)
Meena, A., Prabhakar, T.V.: Sentence level sentiment analysis in the presence of conjuncts using linguistic analysis. In: Advances in Information Retrieval: 29th European Conference on IR Research, ECIR 2007, Rome, Italy, April 2–5, 2007. Proceedings 29, pp. 573–580 (2007)
Mukherjee, A., Liu, B.: Aspect extraction through semi-supervised modeling. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Long Papers, vol. 1, pp. 339–348 (2012)
Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: HLT (2005)
Dragoni, M., Petrucci, G.: A neural word embeddings approach for multi-domain sentiment analysis. IEEE Trans. Affect. Comput.Comput. 8(4), 457–470 (2017). https://doi.org/10.1109/TAFFC.2017.2717879
Yuan, Z., Wu, S., Wu, F., Liu, J., Huang, Y.: Domain attention model for multi-domain sentiment classification. Knowl. Based Syst. 155, 1–10 (2018). https://doi.org/10.1016/j.knosys.2018.05.004
Boiy, E., Moens, M.-F.: A machine learning approach to sentiment analysis in multilingual Web texts. Inf. Retr. Boston 12(5), 526–558 (2009). https://doi.org/10.1007/s10791-008-9070-z
Soleymani, M., Garcia, D., Jou, B., Schuller, B., Chang, S.F., Pantic, M.: A survey of multimodal sentiment analysis. Image Vis. Comput.Comput. 65, 3–14 (2017). https://doi.org/10.1016/j.imavis.2017.08.003
Morency, L.-P., Mihalcea, R., Doshi, P.: Towards multimodal sentiment analysis: harvesting opinions from the web. In: Proceedings of the 13th International Conference on Multimodal Interfaces, in ICMI ’11. New York, NY, USA: Association for Computing Machinery, pp. 169–176 (2011). https://doi.org/10.1145/2070481.2070509.
Moussa, M.E., Mohamed, E.H., Haggag, M.H.: A survey on opinion summarization techniques for social media. Future Comput. Inform. J. 3(1), 82–109 (2018). https://doi.org/10.1016/j.fcij.2017.12.002
Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, in KDD’ 04. Association for Computing Machinery, New York, NY, USA, pp. 168–177 (2004). https://doi.org/10.1145/1014052.1014073
Jindal, N., Liu, B.: Opinion spam and analysis. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, in WSDM ’08. Association for Computing Machinery, New York, NY, USA, pp. 219–230 (2008). https://doi.org/10.1145/1341531.1341560
Kim, S.-M., Hovy, E.: Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics, in COLING ’04. Association for Computational Linguistics, USA, p. 1367 (2004). https://doi.org/10.3115/1220355.1220555
Ortis, A., Farinella, G.M., Battiato, S.: Survey on visual sentiment analysis. IET Image Process. 14(8), 1440–1456 (2020)
Habimana, O., Li, Y., Li, R., Gu, X., Yu, G.: Sentiment analysis using deep learning approaches: an overview. Sci. China Inf. Sci. (2020). https://doi.org/10.1007/s11432-018-9941-6
Jain, S., Gupta, V.: Sentiment analysis: a recent survey with applications and a proposed ensemble algorithm. In: Smart Innovation, Systems and Technologies, Springer Science and Business Media Deutschland GmbH, pp. 13–25 (2022). https://doi.org/10.1007/978-981-16-9447-9_2
Gottipati, S., Shankararaman, V., Gan, S.: A conceptual framework for analyzing students’ feedback. In: 2017 IEEE Frontiers in Education Conference (FIE), pp. 1–8 (2017). https://doi.org/10.1109/FIE.2017.8190703
Dhanalakshmi, V., Bino, D., Saravanan, A.M.: Opinion mining from student feedback data using supervised learning algorithms. In: 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), pp. 1–5 (2016). https://doi.org/10.1109/ICBDSC.2016.7460390
Koufakou, A., Gosselin, J., Guo, D.: Using data mining to extract knowledge from student evaluation comments in undergraduate courses. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3138–3142 (2016). https://doi.org/10.1109/IJCNN.2016.7727599
Altrabsheh, N., Gaber, M.M., Cocea, M.: SA-E: sentiment analysis for education. Frontiers in Artificial Intelligence and Applications, 255, pp. 353–362 (2013). https://doi.org/10.3233/978-1-61499-264-6-353
Colace, F., de Santo, M., Greco, L.: SAFE: a sentiment analysis framework for E-learning. Int. J. Emerg. Technol. Learn. (iJET) 9(6), 37 (2014). https://doi.org/10.3991/ijet.v9i6.4110
Rani, S., Kumar, P.: A sentiment analysis system to improve teaching and learning. Computer (Long Beach Calif) 50(5), 36–43 (2017). https://doi.org/10.1109/MC.2017.133
Scaffidi, C.: Mining online forums for valuable contributions. In: 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2016). https://doi.org/10.1109/CISTI.2016.7521559
Cummins, S., Burd, L., Hatch, A.: Using feedback tags and sentiment analysis to generate sharable learning resources investigating automated sentiment analysis of feedback tags in a programming course. In: 2010 10th IEEE International Conference on Advanced Learning Technologies, pp. 653–657 (2010) https://doi.org/10.1109/ICALT.2010.186
Wen, M., Yang, D., Rosé, C.P.: Sentiment analysis in MOOC discussion forums: what does it tell us? In: EDM (2014)
Tucker, C., Pursel, B., Divinsky, A.: Mining student-generated textual data in MOOCS and quantifying their effects on student performance and learning outcomes. In: 2014 ASEE Annual Conference & Exposition Proceedings, ASEE Conferences, pp. 24.907.1–24.907.14. https://doi.org/10.18260/1-2--22840
Oliveiar, L., Figueira, A.: Visualization of sentiment spread on social networked content: Learning analytics for integrated learning environments in. IEEE Glob. Eng. Educ. Conf. (EDUCON) 2017, 1290–1298 (2017). https://doi.org/10.1109/EDUCON.2017.7943014
Chaturvedi, S., Mishra, V., Mishra, N.: Sentiment analysis using machine learning for business intelligence. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 2162–2166 (2017). https://doi.org/10.1109/ICPCSI.2017.8392100
Benedetto, F., Tedeschi, A.: Big data sentiment analysis for brand monitoring in social media streams by cloud computing. In: Pedrycz, W., Chen, S.-M. (eds.) Sentiment Analysis and Ontology Engineering: An Environment of Computational Intelligence, pp. 341–377. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30319-2_14
Cheng, L.-C., Tsai, S.-L.: Deep learning for automated sentiment analysis of social media. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, in ASONAM ’19. Association for Computing Machinery, New York, NY, USA, pp. 1001–1004 (2019). https://doi.org/10.1145/3341161.3344821
Nemes, L., Kiss, A.: Social media sentiment analysis based on COVID-19. J. Inf. Telecommun. 5(1), 1–15 (2021). https://doi.org/10.1080/24751839.2020.1790793
Bhat, M., Qadri, M., Beg, N.-A., Kundroo, M., Ahanger, N., Agarwal, B.: Sentiment analysis of social media response on the Covid19 outbreak. Brain Behav. Immun.Behav. Immun. 87, 136–137 (2020). https://doi.org/10.1016/j.bbi.2020.05.006
Ashok, M., Rajanna, S., Joshi, P.V., Kamath, S.: A personalized recommender system using machine learning based sentiment analysis over social data. In: 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1–6 (2016). https://doi.org/10.1109/SCEECS.2016.7509354
Sun, J., Wang, G., Cheng, X., Fu, Y.: Mining affective text to improve social media item recommendation. Inf. Process. Manag.Manag. 51(4), 444–457 (2015). https://doi.org/10.1016/j.ipm.2014.09.002
Sousa, M.G., Sakiyama, K., de Souza Rodrigues, L., Moraes, P.H., Fernandes, E.R., Matsubara, E.T.: BERT for stock market sentiment analysis. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1597–1601 (2019). https://doi.org/10.1109/ICTAI.2019.00231
Ren, R., Wu, D.D., Liu, T.: Forecasting stock market movement direction using sentiment analysis and support vector machine. IEEE Syst. J. 13(1), 760–770 (2019). https://doi.org/10.1109/JSYST.2018.2794462
Pagolu, V.S., Reddy, K.N., Panda, G., Majhi, B.: Sentiment analysis of Twitter data for predicting stock market movements. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 1345–1350 (2016). https://doi.org/10.1109/SCOPES.2016.7955659
Khedr, A.E., Salama, S.E., Yaseen, N.: Predicting stock market behavior using data mining technique and news sentiment analysis. Int. J. Intell. Syst. Appl. 9(7), 22–30 (2017). https://doi.org/10.5815/ijisa.2017.07.03
Dang, N.C., Moreno-García, M.N., de la Prieta, F.: Sentiment analysis based on deep learning: a comparative study. Electronics (Switzerland) 9(3), 483 (2020). https://doi.org/10.3390/electronics9030483
Jain, A.P., Dandannavar, P.: Application of machine learning techniques to sentiment analysis. In: 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), pp. 628–632 (2016). https://doi.org/10.1109/ICATCCT.2016.7912076
Chaturvedi, I., Cambria, E., Welsch, R.E., Herrera, F.: Distinguishing between facts and opinions for sentiment analysis: survey and challenges. Inf. Fus. 44, 65–77 (2018). https://doi.org/10.1016/j.inffus.2017.12.006
Rambocas, M., Pacheco, B.G.: Online sentiment analysis in marketing research: a review. J. Res. Interact. Mark. 12(2), 146–163 (2018). https://doi.org/10.1108/JRIM-05-2017-0030
Haselmayer, M., Jenny, M.: Sentiment analysis of political communication: combining a dictionary approach with crowdcoding. Qual. Quant. 51(6), 2623–2646 (2017). https://doi.org/10.1007/s11135-016-0412-4
Kušen, E., Strembeck, M.: Politics, sentiments, and misinformation: an analysis of the Twitter discussion on the 2016 Austrian Presidential Elections. Online Soc. Netw. Media 5, 37–50 (2018). https://doi.org/10.1016/j.osnem.2017.12.002
Kuamri, S., Babu, C.N.: Real time analysis of social media data to understand people emotions towards national parties. In: 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6 (2017). https://doi.org/10.1109/ICCCNT.2017.8204059
Boukabous, M., Azizi, M.: Crime prediction using a hybrid sentiment analysis approach based on the bidirectional encoder representations from transformers. Indones. J. Electr. Eng. Comput. Sci. 25(2), 1131 (2022). https://doi.org/10.11591/ijeecs.v25.i2.pp1131-1139
el Hannach, H., Benkhalifa, M.: WordNet based implicit aspect sentiment analysis for crime identification from Twitter. Int. J. Adv. Comput. Sci. Appl.Comput. Sci. Appl. (2018). https://doi.org/10.14569/IJACSA.2018.091222
Azeez, J., Aravindhar, D.J.: Hybrid approach to crime prediction using deep learning. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1701–1710. IEEE (2015). https://doi.org/10.1109/ICACCI.2015.7275858
Gerber, M.S.: Predicting crime using Twitter and kernel density estimation. Decis. Support. Syst. Support. Syst. 61, 115–125 (2014). https://doi.org/10.1016/j.dss.2014.02.003
Sufi, F.K., Khalil, I.: Automated disaster monitoring from social media posts using AI-based location intelligence and sentiment analysis. IEEE Trans. Comput. Soc. Syst. (2022). https://doi.org/10.1109/TCSS.2022.3157142
Mendon, S., Dutta, P., Behl, A., Lessmann, S.: A hybrid approach of machine learning and lexicons to sentiment analysis: enhanced insights from Twitter data of natural disasters. Inf. Syst. Front. 23(5), 1145–1168 (2021). https://doi.org/10.1007/s10796-021-10107-x
Maharani, W.: Sentiment analysis during jakarta flood for emergency responses and situational awareness in disaster management using BERT. In: 2020 8th International Conference on Information and Communication Technology (ICoICT), pp. 1–5 (2020). https://doi.org/10.1109/ICoICT49345.2020.9166407
Ragini, J.R., Anand, P.M.R., Bhaskar, V.: Big data analytics for disaster response and recovery through sentiment analysis. Int. J. Inf. Manag. 42, 13–24 (2018). https://doi.org/10.1016/j.ijinfomgt.2018.05.004
Singh, P., Sawhney, R.S., Kahlon, K.S.: Sentiment analysis of demonetization of 500 & 1000 rupee banknotes by Indian government. ICT Express 4(3), 124–129 (2018). https://doi.org/10.1016/j.icte.2017.03.001
Roy, K., Kohli, D., Kumar, R.K.S., Sahgal, R., Wen-Bin, Yu.: Sentiment analysis of Twitter data for demonetization in India ? A text mining approach. Issues Inf. Syst. 18(4), 9–15 (2017). https://doi.org/10.48009/4_iis_2017_9-15
Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. (2018). https://doi.org/10.1002/widm.1253
Mumuni, A., Mumuni, F.: Automated data processing and feature engineering for deep learning and big data applications: a survey. J. Inf. Intell. (2024). https://doi.org/10.1016/j.jiixd.2024.01.002
O’Mahony, N., et al.: Deep learning vs. traditional computer vision. In: Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), vol. 1, pp. 128–144 (2020)
Joseph, J., Vineetha, S., Sobhana, N.V.: A survey on deep learning based sentiment analysis. Mater. Today Proc. 58, 456–460 (2022). https://doi.org/10.1016/j.matpr.2022.02.483
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Patterson, J., Gibson, A.: Deep Learning: A Practitioner’s Approach, 1st edn. O’Reilly Media Inc, New York (2017)
Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, in ICML ’08. New York, NY, USA: Association for Computing Machinery, pp. 160–167 (2008). https://doi.org/10.1145/1390156.1390177
Wang, J., Sun, J., Lin, H., Dong, H., Zhang, S.: Convolutional neural networks for expert recommendation in community question answering. Sci. China Inf. Sci. 60(11), 110102 (2017). https://doi.org/10.1007/s11432-016-9197-0
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (Almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences (2014). arXiv preprint arXiv:1404.2188. https://doi.org/10.48550/arXiv.1404.2188
Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics, Stroudsburg, PA, USA (2014). https://doi.org/10.3115/v1/D14-1181
Johnson, R., Zhang, T.: Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Long Papers), vol. 1, pp. 562–570. Association for Computational Linguistics, Stroudsburg, PA, USA (2017). https://doi.org/10.18653/v1/P17-1052
Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very deep convolutional networks for text classification (2016). arXiv preprint arXiv:1606.01781. https://doi.org/10.48550/arXiv.1606.01781
Elman, J.L.: Finding structure in time. Cogn. Sci.. Sci. 14(2), 179–211 (1990). https://doi.org/10.1016/0364-0213(90)90002-E
Ko, W.-J., Tseng, B.-H., Lee, H.-Y.: Recurrent Neural Network based language modeling with controllable external memory. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5705–5709 (2017). https://doi.org/10.1109/ICASSP.2017.7953249
Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6(2), 107–116 (1998). https://doi.org/10.1142/S0218488598000094
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput.Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014) arXiv preprint arXiv:1406.1078. https://doi.org/10.48550/arXiv.1406.1078
Sun, X., Li, X., Zhang, S., Wang, S., Wu, F., Li, J., Zhang, T. and Wang, G. Sentiment analysis through llm negotiations (2023) arXiv preprint arXiv:2311.01876. https://doi.org/10.48550/arXiv.2311.01876
Howard, J., Ruder, S.: Universal language model fine-tuning for text classification (2018). arXiv preprint arXiv:1801.06146. https://doi.org/10.48550/arXiv.1801.06146
Khosravi, A., Rahmati, Z., Vefghi, A.: Relational graph convolutional networks for sentiment analysis (2024). arXiv preprint arXiv:2404.13079. https://doi.org/10.48550/arXiv.2404.13079
Marra, G., Diligenti, M., Giannini, F.: Relational reasoning networks (2021). arXiv preprint arXiv:2106.00393. https://doi.org/10.48550/arXiv.2106.00393
Do, H.H., Prasad, P.W.C., Maag, A., Alsadoon, A.: Deep learning for aspect-based sentiment analysis: a comparative review. Expert Syst. Appl. 118, 272–299 (2019). https://doi.org/10.1016/j.eswa.2018.10.003
Lee, G., Jeong, J., Seo, S., Kim, C., Kang, P.: Sentiment classification with word localization based on weakly supervised learning with a convolutional neural network. Knowl. Based Syst. 152, 70–82 (2018). https://doi.org/10.1016/j.knosys.2018.04.006
Dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: COLING (2014)
Hassan, A., Mahmood, A.: Convolutional recurrent deep learning model for sentence classification. IEEE Access 6, 13949–13957 (2018). https://doi.org/10.1109/ACCESS.2018.2814818
Singhal, P. and Bhattacharyya, P., 2016. Sentiment analysis and deep learning: a survey. Center for Indian Language Technology, Indian Institute of Technology, Bombay. https://www.cfilt.iitb.ac.in/~cfiltnew/resources/surveys/sentiment-deeplearning-2016-prerna.pdf
Peng, H., Ma, Y., Li, Y., Cambria, E.: Learning multi-grained aspect target sequence for Chinese sentiment analysis. Knowl. Based Syst. 148, 167–176 (2018). https://doi.org/10.1016/j.knosys.2018.02.034
Rao, G., Huang, W., Feng, Z., Cong, Q.: LSTM with sentence representations for document-level sentiment classification. Neurocomputing 308, 49–57 (2018). https://doi.org/10.1016/j.neucom.2018.04.045
Rana, R.: Gated Recurrent Unit (GRU) for emotion classification from noisy speech (2016). arXiv preprint arXiv:1612.07778. https://doi.org/10.48550/arXiv.1612.07778
Verma, S., Saini, M., Sharan, A.: Deep sequential model for review rating prediction. In: 2017 Tenth International Conference on Contemporary Computing (IC3), pp. 1–6 (2017). https://doi.org/10.1109/IC3.2017.8284318
Acheampong, F.A., Nunoo-Mensah, H., Chen, W.: Transformer models for text-based emotion detection: a review of BERT-based approaches. Artif. Intell. Rev. Intell. Rev. 54(8), 5789–5829 (2021). https://doi.org/10.1007/s10462-021-09958-2
Shojaee-Mend, H., Mohebbati, R., Amiri, M., Atarodi, A.: Evaluating the strengths and weaknesses of large language models in answering neurophysiology questions. Sci. Rep. 14(1), 1–10 (2024)
Lappin, S.: Assessing the strengths and weaknesses of large language models. J. Logic Lang. Inf. 33(1), 9–20 (2024). https://doi.org/10.1007/s10849-023-09409-x
Chen, T., Qiu, D., Wu, Y., Khan, A., Ke, X., Gao, Y.: View-based explanations for graph neural networks. Proc. ACM Manag. Data (2024). https://doi.org/10.1145/3639295
Liu, X., Zhang, L., Guan, H.: Uplifting message passing neural network with graph original information (2022). arXiv preprint arXiv:2210.05382. https://doi.org/10.48550/arXiv.2210.05382
Jain, P.K., Saravanan, V., Pamula, R.: A hybrid CNN-LSTM: a deep learning approach for consumer sentiment analysis using qualitative user-generated contents. ACM Trans. Asian and Low-Resource Lang. Inf. Process. 20(5), 1 (2021). https://doi.org/10.1145/3457206
Brauwers, G., Frasincar, F.: A survey on aspect-based sentiment classification. ACM Comput. Surv.Comput. Surv. (2021). https://doi.org/10.1145/3503044
Alshuwaier, F., Areshey, A., Poon, J.: Applications and enhancement of document-based sentiment analysis in deep learning methods: systematic literature review. Intell. Syst. Appl. (2022). https://doi.org/10.1016/j.iswa.2022.200090
Rani, S., Kumar, P.: Deep learning based sentiment analysis using convolution neural network. Arab. J. Sci. Eng. 44(4), 3305–3314 (2019). https://doi.org/10.1007/s13369-018-3500-z
Tyagi, V., Kumar, A., Das, S.: Sentiment analysis on twitter data using deep learning approach. In: Proceedings—IEEE 2020 2nd International Conference on Advances in Computing, Communication Control and Networking, ICACCCN 2020, Institute of Electrical and Electronics Engineers Inc., pp. 187–190 (2020). https://doi.org/10.1109/ICACCCN51052.2020.9362853
Yang, L., Li, Y., Wang, J., Sherratt, R.S.: Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access 8, 23522–23530 (2020). https://doi.org/10.1109/ACCESS.2020.2969854
Obiedat, R., Al-Darras, D., Alzaghoul, E., Harfoushi, O.: Arabic aspect-based sentiment analysis: a systematic literature review. In: IEEE Access, Institute of Electrical and Electronics Engineers Inc., vol. 9, pp. 152628–152645 (2021). https://doi.org/10.1109/ACCESS.2021.3127140
Aydln, C.R., Gungor, T.: Combination of recursive and recurrent neural networks for aspect-based sentiment analysis using inter-aspect relations. IEEE Access 8, 77820–77832 (2020). https://doi.org/10.1109/ACCESS.2020.2990306
Gothane, S., et al.: Sentiment analysis in social media using deep learning techniques. IJISAE (2024)
Zyout, I., Zyout, M.: Sentiment analysis of student feedback using attention-based RNN and transformer embedding. Int. J. Artif. Intell. 13(2), 2173–2184 (2024)
Durga, P., Godavarthi, D.: Deep-sentiment: an effective deep sentiment analysis using a decision-based recurrent neural network (D-RNN). IEEE Access 11, 108433–108447 (2023). https://doi.org/10.1109/ACCESS.2023.3320738
Demotte, P., Senevirathne, L., Karunanayake, B., Munasinghe, U., Ranathunga, S.: Sentiment analysis of sinhala news comments using sentence-state LSTM networks. In: 2020 Moratuwa Engineering Research Conference (MERCon), pp. 283–288 (2020). https://doi.org/10.1109/MERCon50084.2020.9185327
Wang, B., Guo, P., Wang, X., He, Y., Wang, W.: Transparent aspect-level sentiment analysis based on dependency syntax analysis and its application on COVID-19. J. Data Inf. Qual. 14(2), 1 (2022). https://doi.org/10.1145/3460002
Sachin, S., Tripathi, A., Mahajan, N., Aggarwal, S., Nagrath, P.: Sentiment analysis using gated recurrent neural networks. SN Comput. Sci. (2020). https://doi.org/10.1007/s42979-020-0076-y
Zhang, B., Li, X., Xu, X., Leung, K.C., Chen, Z., Ye, Y.: Knowledge guided Capsule attention network for aspect-based sentiment analysis. IEEE/ACM Trans. Audio Speech Lang. Process. (2020). https://doi.org/10.1109/TASLP.2020.3017093
Abimbola, B., De La Cal Marin, E., Tan, Q.: Enhancing legal sentiment analysis: a convolutional neural network-long short-term memory document-level model. Mach. Learn Knowl. Extr. 6(2), 877–897 (2024). https://doi.org/10.3390/make6020041
Huang, B., et al.: Aspect-level sentiment analysis with aspect-specific context position information. Knowl. Based Syst. (2022). https://doi.org/10.1016/j.knosys.2022.108473
Sudhir, P., Suresh, V.D.: Comparative study of various approaches, applications and classifiers for sentiment analysis. Glob. Transit. Proc. 2(2), 205–211 (2021). https://doi.org/10.1016/j.gltp.2021.08.004
Rida-E-Fatima, S., et al.: A multi-layer dual attention deep learning model with refined word embeddings for aspect-based sentiment analysis. IEEE Access 7, 114795–114807 (2019). https://doi.org/10.1109/ACCESS.2019.2927281
Zhao, N., Gao, H., Wen, X., Li, H.: Combination of convolutional neural network and gated recurrent unit for aspect-based sentiment analysis. IEEE Access 9, 15561–15569 (2021). https://doi.org/10.1109/ACCESS.2021.3052937
Loh, N.K.N., Lee, C.P., Ong, T.S., Lim, K.M.: MPNet-GRUs: sentiment analysis with masked and permuted pre-training for language understanding and gated recurrent units. IEEE Access (2024). https://doi.org/10.1109/ACCESS.2024.3394930
Zhang, B., Zhou, W.: Transformer-encoder-GRU (T-E-GRU) for Chinese sentiment analysis on Chinese comment text. Neural. Process. Lett. 55, 1847 (2021)
Abdullah, T., Ahmet, A.: Deep learning in sentiment analysis: a survey of recent architectures. ACM Comput. Surv. Comput. Surv. (2022). https://doi.org/10.1145/3548772
Obaidi, M., Nagel, L., Specht, A., Klünder, J.: Sentiment analysis tools in software engineering: a systematic mapping study. Inf. Softw. Technol.Softw. Technol. 151, 107018 (2022). https://doi.org/10.1016/j.infsof.2022.107018
Žitnik, S., Blagus, N., Bajec, M.: Target-level sentiment analysis for news articles. Knowl. Based Syst. 249, 108939 (2022). https://doi.org/10.1016/j.knosys.2022.108939
Xiao, Y., Li, C., Thürer, M., Liu, Y., Qu, T.: User preference mining based on fine-grained sentiment analysis. J. Retail. Consum. Serv.Consum. Serv. 68, 103013 (2022). https://doi.org/10.1016/j.jretconser.2022.103013
Hartmann, J., Heitmann, M., Siebert, C., Schamp, C.: More than a feeling: accuracy and application of sentiment analysis. Int. J. Res. Mark. (2022). https://doi.org/10.1016/j.ijresmar.2022.05.005
Du, Y., Wang, Y., Wei, K., Jia, J.: The sentiment analysis and sentiment orientation prediction for hotel based on BERT-BiLSTM model. In: Lecture Notes in Electrical Engineering, pp. 498–505. Springer Science and Business Media Deutschland GmbH, Singapore (2022). https://doi.org/10.1007/978-981-16-9423-3_62
Hoang, M., Alija Bihorac, O., Rouces, J.: Aspect-based sentiment analysis using BERT. In Proceedings of the 22nd Nordic conference on computational linguistics (pp. 187-196). https://aclanthology.org/W19-6120
Biswas, E., Karabulut, M.E., Pollock, L., Vijay-Shanker, K.: Achieving reliable sentiment analysis in the software engineering domain using BERT. In: Proceedings—2020 IEEE International Conference on Software Maintenance and Evolution, ICSME 2020, Institute of Electrical and Electronics Engineers Inc., pp. 162–173 (2020). https://doi.org/10.1109/ICSME46990.2020.00025
Chouikhi, H., Chniter, H., Jarray, F.: Arabic sentiment analysis using BERT model. In: Communications in Computer and Information Science, pp. 621–632. Springer Science and Business Media Deutschland GmbH, Singapore (2021). https://doi.org/10.1007/978-3-030-88113-9_50
Acikalin, U.U., Bardak, B., Kutlu, M.: Turkish sentiment analysis using BERT. In: 2020 28th Signal Processing and Communications Applications Conference, SIU 2020—Proceedings, Institute of Electrical and Electronics Engineers Inc. (2020) https://doi.org/10.1109/SIU49456.2020.9302492
Wang, Y., Chen, Q., Wang, W.: Multi-task BERT for aspect-based sentiment analysis. In: Proceedings - 2021 IEEE International Conference on Smart Computing, SMARTCOMP 2021, Institute of Electrical and Electronics Engineers Inc., pp. 383–385 (2021). https://doi.org/10.1109/SMARTCOMP52413.2021.00077
Jafarian, H., Taghavi, A., Javaheri, A., Rawassizadeh, R.: Exploiting Bert To Improve Aspect-Based Sentiment Analysis Performance on Persian Language. https://github.com/hooshvare/parsbert
Xie, X., Qin, B., Wan, Z., Nie, W.: Text aspect-level sentiment analysis based on multi- task joint learning. In: Proceedings—2021 2nd International Symposium on Computer Engineering and Intelligent Communications, ISCEIC 2021, Institute of Electrical and Electronics Engineers Inc., pp. 127–131 (2021). https://doi.org/10.1109/ISCEIC53685.2021.00033
Tran, O.T., Bui, V.T.: A BERT-based hierarchical model for vietnamese aspect based sentiment analysis. In: Proceedings—2020 12th International Conference on Knowledge and Systems Engineering, KSE 2020, Institute of Electrical and Electronics Engineers Inc., pp. 269–274 (2020). https://doi.org/10.1109/KSE50997.2020.9287650
Zhang, H., Pan, F., Dong, J., Zhou, Y.: BERT-IAN Model for aspect-based sentiment analysis. In: Proceedings - 2020 International Conference on Communications, Information System and Computer Engineering, CISCE 2020, Institute of Electrical and Electronics Engineers Inc., pp. 250–254 (2020). https://doi.org/10.1109/CISCE50729.2020.00056
Wang, L., Yao, C., Li, X., Yu, X.: BERT-based implicit aspect extraction. In: Proceedings of 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology, ICCASIT 2021, Institute of Electrical and Electronics Engineers Inc., pp. 758–761 (2021). https://doi.org/10.1109/ICCASIT53235.2021.9633578
Azhar, A.N., Khodra, M.L.: Fine-tuning pretrained multilingual BERT model for indonesian aspect-based sentiment analysis. In: 2020 7th International Conference on Advance Informatics: Concepts, Theory and Applications (ICAICTA), pp. 1–6. IEEE (2020). https://doi.org/10.1109/ICAICTA49861.2020.9428882
dos Santos, B.N., Marcacini, R.M., Rezende, S.O.: Multi-domain aspect extraction using bidirectional encoder representations from transformers. IEEE Access 9, 91604–91613 (2021). https://doi.org/10.1109/ACCESS.2021.3089099
He, A., Abisado, M.: Text sentiment analysis of douban film short comments based on BERT-CNN-BiLSTM-Att model. IEEE Access 12, 45229–45237 (2024). https://doi.org/10.1109/ACCESS.2024.3381515
Miah, M.S.U., Kabir, M.M., Bin Sarwar, T., Safran, M., Alfarhood, S., Mridha, M.F.: A multimodal approach to cross-lingual sentiment analysis with ensemble of transformer and LLM. Sci. Rep. 14(1), 9603 (2024). https://doi.org/10.1038/s41598-024-60210-7
Xing, F.: Designing heterogeneous LLM agents for financial sentiment analysis (2024). arXiv preprint arXiv:2401.05799. https://doi.org/10.48550/arXiv.2401.05799
Zhang, B., Yang, H., Zhou, T., Babar, A., Liu, X.-Y.: Enhancing financial sentiment analysis via retrieval augmented large language models. In Proceedings of the Fourth ACM International Conference on AI in Finance (ICAIF '23). Association for Computing Machinery, New York, NY, USA, 349–356 (2023). https://doi.org/10.1145/3604237.3626866
Deng, X., Bashlovkina, V., Han, F., Baumgartner, S., Bendersky, M.: LLMs to the moon? Reddit market sentiment analysis with large language models. In: Companion Proceedings of the ACM Web Conference 2023, pp. 1014–1019. ACM, New York, NY, USA (2023). https://doi.org/10.1145/3543873.3587605
Krugmann, J.O., Hartmann, J.: Sentiment analysis in the age of generative AI. Cust. Needs Solut. Needs Solut. 11(1), 3 (2024). https://doi.org/10.1007/s40547-024-00143-4
Bhat, R.H.: Stock price trend prediction using emotion analysis of financial headlines with distilled LLM model (2024). https://mavmatrix.uta.edu/cse_theses/4/
Li, Y., Li, N.: Sentiment analysis of weibo comments based on graph neural network. IEEE Access 10, 23497–23510 (2022). https://doi.org/10.1109/ACCESS.2022.3154107
Yang, S., Xing, L., Li, Y., Chang, Z.: Implicit sentiment analysis based on graph attention neural network. Eng. Rep. (2022). https://doi.org/10.1002/eng2.12452
Zhao, X., et al.: RDGCN: reinforced dependency graph convolutional network for aspect-based sentiment analysis. In: Proceedings of the 17th ACM International Conference on Web Search and Data Mining, pp. 976–984. ACM, New York, NY, USA (2024). https://doi.org/10.1145/3616855.3635775
Jin, Y., Zhao, A.: Bert-based graph unlinked embedding for sentiment analysis. Complex Intell. Syst. 10(2), 2627–2638 (2024). https://doi.org/10.1007/s40747-023-01289-9
Yin, S., Zhong, G.: TextGT: a double-view graph transformer on text for aspect-based sentiment analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 19404–19412 (2024)
Chen, W., Zheng, X., Zhou, H., Li, Z.: Evaluation of logistics service quality: sentiment analysis of comment text based on multi-level graph neural network. Traitement du Signal 38(6), 1853–1860 (2021). https://doi.org/10.18280/ts.380630
Birjali, M., Kasri, M., Beni-Hssane, A.: A comprehensive survey on sentiment analysis: approaches, challenges and trends. Knowl. Based Syst. (2021). https://doi.org/10.1016/j.knosys.2021.107134
Jain, P.K., Pamula, R., Srivastava, G.: A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Comput. Sci. Rev. 41, 100413 (2021). https://doi.org/10.1016/j.cosrev.2021.100413
Chakraborty, K., Bhattacharyya, S., Bag, R., Hassanien, A.A.: Sentiment analysis on a set of movie reviews using deep learning techniques. Soc. Netw. Anal. (2019). https://doi.org/10.1016/b978-0-12-815458-8.00007-4
Shayaa, S., et al.: Sentiment analysis of big data: methods, applications, and open challenges. IEEE Access 6, 37807–37827 (2018). https://doi.org/10.1109/ACCESS.2018.2851311
Beseiso, M., Elmousalami, H.: Subword attentive model for arabic sentiment analysis: a deep learning approach. ACM Trans. Asian Low Resource Lang. Inf. Process. 19(2), 1–7 (2020). https://doi.org/10.1145/3360016
Liu, H., Chatterjee, I., Zhou, M., Lu, X.S., Abusorrah, A.: Aspect-based sentiment analysis: a survey of deep learning methods. IEEE Trans. Comput. Soc. Syst. 7(6), 1358–1375 (2020). https://doi.org/10.1109/TCSS.2020.3033302
Zhu, P., Chen, Z., Zheng, H., Qian, T.: Aspect aware learning for aspect category sentiment analysis. ACM Trans. Knowl. Discov. DataKnowl. Discov. Data (2019). https://doi.org/10.1145/3350487
Liu, L., Chen, H., Sun, Y.: A multi-classification sentiment analysis model of chinese short text based on gated linear units and attention mechanism. ACM Trans. Asian Low-Resource Lang. Inf. Process. (2021). https://doi.org/10.1145/3464425
Agüero-Torales, M.M., Abreu Salas, J.I., López-Herrera, A.G.: Deep learning and multilingual sentiment analysis on social media data: an overview. Appl. Soft Comput.Comput. (2021). https://doi.org/10.1016/j.asoc.2021.107373
Li, Y., Jia, B., Guo, Y., Chen, X.: Mining user reviews for mobile app comparisons. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1(3), 1–15 (2017). https://doi.org/10.1145/3130935
Sehgal, D., Agarwal, A.K.: Real-time sentiment analysis of big data applications using twitter data with Hadoop framework. In: Advances in Intelligent Systems and Computing, pp. 765–772. Springer Verlag, Singapore (2018). https://doi.org/10.1007/978-981-10-5699-4_72
Nasreen Taj, M.B., Girisha, G.S.: Insights of strength and weakness of evolving methodologies of sentiment analysis. Glob. Transit. Proc. 2(2), 157–162 (2021). https://doi.org/10.1016/j.gltp.2021.08.059
Karampatsis, R.-M., Babii, H., Robbes, R., Sutton, C., Janes, A.: Big code != big vocabulary: open-vocabulary models for source code (2020). https://doi.org/10.1145/3377811.3380342
She, J., Hu, Y., Shi, H., Wang, J., Shen, Q., Mei, T.: Dive into Ambiguity: latent distribution mining and pairwise uncertainty estimation for facial expression recognition (2021). https://doi.org/10.48550/arXiv.2104.00232
Li, X., et al.: OSLNet: deep small-sample classification with an orthogonal softmax layer. EEE Trans. Image Process. (2020). https://doi.org/10.1109/TIP.2020.2990277
Peterson, V., Rufiner, H.L., Spies, R.D.: Kullback-leibler penalized sparse discriminant analysis for event-related potential classification (2016). arXiv preprint arXiv:1608.06863. https://doi.org/10.48550/arXiv.1608.06863
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Neeraj Anand Sharma, Professor ABM Shawkat Ali, and Associate Professor Muhammad Ashad Kabir. The first draft of the manuscript was written by Neeraj Anand Sharma and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Research involving human and animal participants
This research did not involve any human or animal-based data.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sharma, N.A., Ali, A.B.M.S. & Kabir, M.A. A review of sentiment analysis: tasks, applications, and deep learning techniques. Int J Data Sci Anal (2024). https://doi.org/10.1007/s41060-024-00594-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41060-024-00594-x