Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

In situ construction of heterostructured bimetallic sulfide/phosphide with rich interfaces for high-performance aqueous Zn-ion batteries

原位构筑富异质结界面的双金属硫/磷化合物提升水 系锌电池性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

It is still challenging to develop suitable cathode structures for high-rate and stable aqueous Zn-ion batteries. Herein, a phosphating-assisted interfacial engineering strategy is designed for the controllable conversion of NiCo2S4 nanosheets into heterostructured NiCoP/NiCo2S4 as the cathodes in aqueous Zn-ion batteries. The multicomponent heterostructures with rich interfaces can not only improve the electrical conductivity but also enhance the diffusion pathways for Zn-ion storage. As expected, the NiCoP/NiCo2S4 electrode has high performance with a large specific capacity of 251.1 mA h g−1 at a high current density of 10 A g−1 and excellent rate capability (retaining about 76% even at 50 A g−1). Accordingly, the Zn-ion battery using NiCoP/NiCo2S4 as the cathode delivers a high specific capacity (265.1 mA h g−1 at 5A g−1), a long-term cycling stability (96.9% retention after 5000 cycles), and a competitive energy density (444.7 W h kg−1 at the power density of 8.4 kW kg−1). This work therefore provides a simple phosphating-assisted interfacial engineering strategy to construct heterostructured electrode materials with rich interfaces for the development of high-performance energy storage devices in the future.

摘要

目前开发高倍率和稳定的水系锌离子电池电极材料仍然是一个 挑战. 本研究提出了一种磷化辅助界面工程策略, 将NiCo2S4纳米片可 控转化为NiCoP/NiCo2S4异质结构作为水系锌离子电池电极材料. 具有 丰富界面的多组分异质结构不仅提高了电极材料的电导率, 而且增强 了锌离子的扩散路径. 和预期结果一样, NiCoP/NiCo2S4电极材料在 10 A g−1的电流密度下其容量高达251.1 mA h g−1, 且具有优异的倍率性 能(电流密度高达50 A g−1时, 其容量保持约为76%). 此外, 以NiCoP/NiCo2S4为正极组装的锌离子电池也展现了优异的比容量(在5 A g−1的 电流密度下高达265.1mAh g−1), 长循环稳定性(经过5000圈循环后比容 量保持率为96.9%)和高能量密度(在8.4 kW kg−1的功率密度下高达 444.7Wh kg−1). 因此, 本研究为构建具有丰富界面的异质结电极材料 提供了一种简单的磷化辅助界面工程策略, 为未来开发高性能储能器 件提供了理论基础.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Y, Zhang W, Zhou D, et al. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano, 2019, 13: 4731–4741

    Article  CAS  Google Scholar 

  2. Fang G, Zhou J, Pan A, et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett, 2018, 3: 2480–2501

    Article  CAS  Google Scholar 

  3. Shen Y, Li Z, Cui Z, et al. Boosting the interface reaction activity and kinetics of cobalt molybdate by phosphating treatment for aqueous zinc-ion batteries with high energy density and long cycle life. J Mater Chem A, 2020, 8: 21044–21052

    Article  CAS  Google Scholar 

  4. Liu J, Wang J, Ku Z, et al. Aqueous rechargeable alkaline CoxNi2−xS2/TiO2 battery. ACS Nano, 2016, 10: 1007–1016

    Article  CAS  Google Scholar 

  5. Tang B, Shan L, Liang S, et al. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci, 2019, 12: 3288–3304

    Article  CAS  Google Scholar 

  6. Zhang K, Ye X, Shen Y, et al. Interface engineering of Co3O4 nanowire arrays with ultrafine NiO nanowires for high-performance rechargeable alkaline batteries. Dalton Trans, 2020, 49: 8582–8590

    Article  CAS  Google Scholar 

  7. Huang M, Li M, Niu C, et al. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv Funct Mater, 2019, 29: 1807847

    Article  Google Scholar 

  8. Zhang SW, Yin BS, Luo YZ, et al. Fabrication and theoretical investigation of cobaltosic sulfide nanosheets for flexible aqueous Zn/Co batteries. Nano Energy, 2020, 68: 104314

    Article  CAS  Google Scholar 

  9. Liu J, Chen M, Zhang L, et al. A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film. Nano Lett, 2014, 14: 7180–7187

    Article  CAS  Google Scholar 

  10. Jiao Y, Hong W, Li P, et al. Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor. Appl Catal B-Environ, 2019, 244: 732–739

    Article  CAS  Google Scholar 

  11. Kim H, Jeong G, Kim YU, et al. Metallic anodes for next generation secondary batteries. Chem Soc Rev, 2013, 42: 9011–9034

    Article  CAS  Google Scholar 

  12. Liu F, Chen Z, Fang G, et al. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett, 2019, 11: 25

    Article  CAS  Google Scholar 

  13. Hu P, Wang T, Zhao J, et al. Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Appl Mater Interfaces, 2015, 7: 26396–26399

    Article  CAS  Google Scholar 

  14. Liu J, Guan C, Zhou C, et al. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv Mater, 2016, 28: 8732–8739

    Article  CAS  Google Scholar 

  15. Zeng Y, Meng Y, Lai Z, et al. An ultrastable and high-performance flexible fiber-shaped Ni-Zn battery based on a Ni-NiO heterostructured nanosheet cathode. Adv Mater, 2017, 29: 1702698

    Article  Google Scholar 

  16. Tang Y, Li X, Lv H, et al. Stabilized Co3+/Co4+ redox pair in in situ produced CoSe2−x-derived cobalt oxides for alkaline Zn batteries with 10 000-cycle lifespan and 1.9-V voltage plateau. Adv Energy Mater, 2020, 10: 2000892

    Article  CAS  Google Scholar 

  17. Gong M, Li Y, Zhang H, et al. Ultrafast high-capacity NiZn battery with nialco-layered double hydroxide. Energy Environ Sci, 2014, 7: 2025–2032

    Article  CAS  Google Scholar 

  18. Lu Y, Wang J, Zeng S, et al. An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries. J Mater Chem A, 2019, 7: 21678–21683

    Article  CAS  Google Scholar 

  19. Caldeira V, Rouget R, Fourgeot F, et al. Controlling the shape change and dendritic growth in Zn negative electrodes for application in Zn/Ni batteries. J Power Sources, 2017, 350: 109–116

    Article  CAS  Google Scholar 

  20. Shen Y, Zhang K, Yang F, et al. Oxygen vacancies-rich cobalt-doped NiMoO4 nanosheets for high energy density and stable aqueous Ni-Zn battery. Sci China Mater, 2020, 63: 1205–1215

    Article  CAS  Google Scholar 

  21. Xiao J, Wan L, Yang S, et al. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett, 2014, 14: 831–838

    Article  CAS  Google Scholar 

  22. Shen L, Yu L, Wu HB, et al. Formation of nickel cobalt sulfide ball-inball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun, 2015, 6: 6694

    Article  CAS  Google Scholar 

  23. Guan BY, Yu L, Wang X, et al. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv Mater, 2017, 29: 1605051

    Article  Google Scholar 

  24. Zeng W, Zhang G, Wu X, et al. Construction of hierarchical CoS nanowire@NiCo2S4 nanosheet arrays via one-step ion exchange for highperformance supercapacitors. J Mater Chem A, 2015, 3: 24033–24040

    Article  CAS  Google Scholar 

  25. Anwer H, Lee H, Kim HR, et al. Selective transport and separation of charge-carriers by an electron transport layer in NiCo2S4/CdO@CC for excellent water splitting. Appl Catal B-Environ, 2020, 265: 118564

    Article  CAS  Google Scholar 

  26. Chen X, Chen D, Guo X, et al. Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl Mater Interfaces, 2017, 9: 18774–18781

    Article  CAS  Google Scholar 

  27. Shen Y, Zhang K, Chen B, et al. Enhancing the electrochemical performance of nickel cobalt sulfides hollow nanospheres by structural modulation for asymmetric supercapacitors. J Colloid Interface Sci, 2019, 557: 135–143

    Article  CAS  Google Scholar 

  28. Han C, Zhang T, Li J, et al. Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy, 2020, 77: 105165

    Article  CAS  Google Scholar 

  29. Huang J, Xiong Y, Peng Z, et al. A general electrodeposition strategy for fabricating ultrathin nickel cobalt phosphate nanosheets with ultrahigh capacity and rate performance. ACS Nano, 2020, 14: 14201–14211

    Article  CAS  Google Scholar 

  30. Liang H, Gandi AN, Anjum DH, et al. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett, 2016, 16: 7718–7725

    Article  CAS  Google Scholar 

  31. Nguyen TT, Balamurugan J, Kim NH, et al. Hierarchical 3D Zn-Ni-P nanosheet arrays as an advanced electrode for high-performance all-solid-state asymmetric supercapacitors. J Mater Chem A, 2018, 6: 8669–8681

    Article  CAS  Google Scholar 

  32. Tian J, Liu Q, Asiri AM, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc, 2014, 136: 7587–7590

    Article  CAS  Google Scholar 

  33. Song W, Wu J, Wang G, et al. Rich-mixed-valence NixCo3−xPy porous nanowires interwelded junction-free 3D network architectures for ultrahigh areal energy density supercapacitors. Adv Funct Mater, 2018, 28: 1804620

    Article  Google Scholar 

  34. Zhang N, Li Y, Xu J, et al. High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals. ACS Nano, 2019, 13: 10612–10621

    Article  CAS  Google Scholar 

  35. Li Y, Tan X, Tan H, et al. Phosphine vapor-assisted construction of heterostructured Ni2P/NiTe2 catalysts for efficient hydrogen evolution. Energy Environ Sci, 2020, 13: 1799–1807

    Article  CAS  Google Scholar 

  36. Zeng Y, Lai Z, Han Y, et al. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv Mater, 2018, 30: 1802396

    Article  Google Scholar 

  37. Chu W, Shi Z, Hou Y, et al. Trifunctional of phosphorus-doped NiCo2O4 nanowire materials for asymmetric supercapacitor, oxygen evolution reaction, and hydrogen evolution reaction. ACS Appl Mater Interfaces, 2020, 12: 2763–2772

    Article  CAS  Google Scholar 

  38. Tang S, Zhu B, Shi X, et al. General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for high-performance asymmetric all-solid-state pseudocapacitors. Adv Energy Mater, 2017, 7: 1601985

    Article  Google Scholar 

  39. Wang Y, Chen Z, Lei T, et al. Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device. Adv Energy Mater, 2018, 8: 1703453

    Article  Google Scholar 

  40. Guan B, Li Y, Yin B, et al. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem Eng J, 2017, 308: 1165–1173

    Article  CAS  Google Scholar 

  41. Ye C, Zhang L, Guo C, et al. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv Funct Mater, 2017, 27: 1702524

    Article  Google Scholar 

  42. Chen HC, Jiang S, Xu B, et al. Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors. J Mater Chem A, 2019, 7: 6241–6249

    Article  CAS  Google Scholar 

  43. Li S, Yang N, Liao L, et al. Doping β-CoMoO4 nanoplates with phosphorus for efficient hydrogen evolution reaction in alkaline media. ACS Appl Mater Interfaces, 2018, 10: 37038–37045

    Article  CAS  Google Scholar 

  44. Zhou L, Zhang X, Zheng D, et al. Ni3S2@PANI core-shell nanosheets as a durable and high-energy binder-free cathode for aqueous rechargeable nickel-zinc batteries. J Mater Chem A, 2019, 7: 10629–10635

    Article  CAS  Google Scholar 

  45. Zhang H, Zhang X, Li H, et al. Flexible rechargeable Ni//Zn battery based on self-supported NiCo2O4 nanosheets with high power density and good cycling stability. Green Energy Environ, 2018, 3: 56–62

    Article  Google Scholar 

  46. Jian Y, Wang D, Huang M, et al. Facile synthesis of Ni(OH)2/carbon nanofiber composites for improving NiZn battery cycling life. ACS Sustain Chem Eng, 2017, 5: 6827–6834

    Article  CAS  Google Scholar 

  47. Wang X, Wang F, Wang L, et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv Mater, 2016, 28: 4904–4911

    Article  CAS  Google Scholar 

  48. He Y, Zhang P, Huang H, et al. Engineering sulfur vacancies of Ni3S2 nanosheets as a binder-free cathode for an aqueous rechargeable Ni-Zn battery. ACS Appl Energy Mater, 2020, 3: 3863–3875

    Article  CAS  Google Scholar 

  49. Wen J, Feng Z, Liu H, et al. In-situ synthesized Ni2P nanosheet arrays as the cathode for novel alkaline Ni//Zn rechargeable battery. Appl Surf Sci, 2019, 485: 462–467

    Article  CAS  Google Scholar 

  50. Lu Z, Wu X, Lei X, et al. Hierarchical nanoarray materials for advanced nickel-zinc batteries. Inorg Chem Front, 2015, 2: 184–187

    Article  CAS  Google Scholar 

  51. Xu C, Liao J, Yang C, et al. An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy, 2016, 30: 900–908

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51602049 and 51708504), and China Postdoctoral Science Foundation (2017M610217 and 2018T110322).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang F and Shen Y performed the experiments and wrote the article; Cen Z and Wan J conducted the characterization and data analyses; Li S, He G, Hu J and Xu K proposed the experimental design and wrote the paper. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Shijie Li  (李世杰) or Kaibing Xu  (徐开兵).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Fang Yang received her PhD degree from Donghua University in 2015. Currently, she works at the School of Mechanical and Automotive Engineering at Shanghai University of Engineering Science. Her research focuses on rational design and synthesis of nanocomposite materials for energy storage devices.

Shijie Li received his PhD degree in environmental engineering from Donghua University in 2014. He is currently an associate professor at the National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University. His research interests focus on the development of functional nanomaterials and their applications in electrochemical energy storage and conversion, and environmental remediation.

Kaibing Xu received his PhD degree from Donghua University in 2015. Currently, he works at the Research Center for Analysis and Measurement, Donghua University. His research focuses on rational design and synthesis of nanocomposite materials for applications in electrochemical energy storage and conversion such as supercapacitors, alkaline rechargeable batteries and lithium ion batteries.

Electronic supplementary material

40843_2021_1739_MOESM1_ESM.pdf

In situ construction of heterostructured bimetallic sulfide/phosphide with rich interfaces for high-performance aqueous Zn-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Shen, Y., Cen, Z. et al. In situ construction of heterostructured bimetallic sulfide/phosphide with rich interfaces for high-performance aqueous Zn-ion batteries. Sci. China Mater. 65, 356–363 (2022). https://doi.org/10.1007/s40843-021-1739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1739-0

Keywords

Navigation