Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Cost Optimization of the Queueing System with Degrading Service Rate, Bernoulli Vacation, and a Regular Vacation After Fixed Services

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Due to the continuous work, degradation in the working capacity of machines and servers is an inevitable phenomenon. To analyze this type of situation in queueing systems, we considered the degradation in the service rate of the server. For the maintenance purpose, vacation is given after completion of a threshold number of services. After maintenance, the server will start working in the fresh mode, that is, with the initial service rate. The impatient behavior of customers and unreliability of the server are also included, which make our model more realistic. We derived the stability condition for this model and found out the steady state probabilities using matrix geometric method. All the system performance measures are calculated. An expected cost function is constructed and is optimized using the particle swarm optimization method. Effects of degrading service rate as well as breakdown rate and vacation rate are studied on the key measures and the expected cost function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Altman, E., Yechiali, U.: Analysis of customers’ impatience in queues with server vacations. Queu. Syst. 52, 261–279 (2006). https://doi.org/10.1007/s11134-006-6134-x

    Article  MathSciNet  MATH  Google Scholar 

  2. Ancker, C.J., Jr., Gafarian, A.V.: Some queueing problems with balking and reneging. Oper. Res. 2, 88–100 (1963). https://doi.org/10.1287/opre.11.1.88

    Article  MATH  Google Scholar 

  3. Ancker, C.J., Jr., Gafarian, A.V.: Some queueing problem with balking and reneging II. Oper. Res. 2, 928–937 (1963). https://doi.org/10.1287/opre.11.6.928

    Article  MATH  Google Scholar 

  4. Ayyappan, G., Gowthami, R.: A MAP/PH/1 queue with setup time, Bernoulli schedule vacation, balking and Bernoulli feedback. Inte J. Appl. Comput. Math. 8, 62 (2022). https://doi.org/10.1007/s40819-022-01260-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Avi-Itzhak, B., Naor, P.: Some queuing problems with the service station subject to breakdown. Oper. Res. 11(3), 303–320 (1963). https://doi.org/10.1287/opre.11.3.303

    Article  MathSciNet  MATH  Google Scholar 

  6. Chakravarthy, S.R.: Analysis of a multi-server queue with Markovian arrivals and synchronous phase type vacations. Asia-Pacific J. Oper. Res. 26, 85–113 (2009). https://doi.org/10.1142/S0217595909002134

    Article  MathSciNet  MATH  Google Scholar 

  7. Chakravarthy, S.R.: Analysis of MAP/PH1, PH2/1 queue with vacations and optional secondary services. Appl. Math. Model. 37(20–21), 8886–8902 (2013). https://doi.org/10.1016/j.apm.2013.04.012

    Article  MathSciNet  MATH  Google Scholar 

  8. Chakravarthy, S.R.: A comparative study of vacation models under various vacation policies: a simulation approach. In: R. Kulshrestha, C. Shekhar, M. Jain, & S. R. Chakravarthy(Ed. 1), Mathematical Modeling and Computation of Real-Time Problems (3–20), CRC Press, (2021). https://doi.org/10.1201/9781003055037

  9. Chakravarthy, S.R., Shruti, Kulshrestha, R.: A queueing model with server breakdowns, repairs, vacations, and backup server. Op. Res. Persp. 7, 100–131 (2020). https://doi.org/10.1016/j.orp.2019.100131

    Article  MathSciNet  Google Scholar 

  10. Chang, F.M., Liu, T.H., Ke, J.C.: On an unreliable-server retrial queue with customer feedback and impatience. Appl. Math. Model. 55, 171–182 (2018). https://doi.org/10.1016/j.apm.2017.10.025

    Article  MathSciNet  MATH  Google Scholar 

  11. Choudhary, A., Chakravarthy, S.R., Sharma, D.C.: Analysis of MAP/PH/1 queueing system with degrading service rate and phase type vacation. Mathematics 9(19), 2387 (2021). https://doi.org/10.3390/math9192387

    Article  Google Scholar 

  12. Dequan, Y., Wuyi, Y., Gang, X.: Analysis of a queueing system with impatient customers and working vacations. In: Proceedings of the 6th international conference on queueing theory and network applications, 208-212. (2011). https://doi.org/10.1145/2021216.2021245

  13. Das, R.R., Rama Devi, V.N., Rathore, A., Chandan, K.: Analysis of Markovian queueing system with server failures, N-policy and second optional service. Int. J. Nonlinear Anal. Appl. 13(1), 3073–3083 (2022). https://doi.org/10.22075/ijnaa.2022.6048

    Article  Google Scholar 

  14. Doshi, B.T.: Queueing systems with vacation - a survey. Queu. Syst. 1, 29–66 (1986). https://doi.org/10.1007/BF01149327

    Article  MathSciNet  MATH  Google Scholar 

  15. Jain, M., Jain, A.: Working vacations queueing model with multiple types of server breakdowns. Appl. Math. Model. 34, 1–13 (2010). https://doi.org/10.1016/j.apm.2009.03.019

    Article  MathSciNet  MATH  Google Scholar 

  16. Jain, M., Kumar, P., Meena, R.K.: Fuzzy metrics and cost optimization of a fault-tolerant system with vacationing and unreliable server. J. Ambient. Intell. Humaniz. Comput. 11(11), 5755–5770 (2020). https://doi.org/10.1007/s12652-020-01951-x

    Article  Google Scholar 

  17. Jharotia, P., Sharma, D.C.: Machine repair problem with spare and three repairmen with partial server vacation policy. Int. J. Eng. Manag. Sci. 2(3), 44–49 (2015)

    Google Scholar 

  18. Keilson, J., Servi, L.D.: Oscillating random walk models for G1/G/1 vacation systems with Bernoulli schedules. J. Appl. Probab. 23, 790–802 (1986). https://doi.org/10.2307/3214016

    Article  MathSciNet  MATH  Google Scholar 

  19. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of IEEE international conference on neural networks, Piscataway, NJ, 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

  20. Kim, C., Klimenok, V.I., Dudin, A.N.: Analysis of unreliable \(BMAP/PH/N\) type queue with Markovian flow of breakdowns. Appl. Math. Comput. 314, 154–172 (2017). https://doi.org/10.1016/j.amc.2017.06.035

    Article  MathSciNet  MATH  Google Scholar 

  21. Krishnamoorthy, A., Pramod, P.K., Chakravarthy, S.R.: A note on characterizing service interruptions with phase-type distribution. Stoch. Anal. Appl. 31(4), 671–683 (2013). https://doi.org/10.1080/07362994.2013.800367

    Article  MathSciNet  MATH  Google Scholar 

  22. Krishnamoorthy, A., Pramod, P., Chakravarthy, S.R.: Queues with interruptions: a survey. TOP 22, 290–320 (2014). https://doi.org/10.1007/s11750-012-0256-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Liou, C.D., Hsieh, Y.C., Chen, Y.Y.: A new encoding scheme-based hybrid algorithm for minimizing two-machine flow-shop group scheduling problem. Int. J. Syst. Sci. 44, 77–93 (2013). https://doi.org/10.1080/00207721.2011.581396

    Article  MATH  Google Scholar 

  24. Liu, N., Hlynka, M.: A queueing model for sleep as a vacation. Appl. Math. Sci. 12(25), 1239–1249 (2018). https://doi.org/10.12988/ams.2018.88123

    Article  Google Scholar 

  25. Neuts, M.F.: Matrix geometric solutions in stochastic models: an algorithmic approach, Baltimore, MD: The John Hopkins University Press, (1981). https://doi.org/10.1002/net.3230130219

  26. Ozkar, S., Kocer, U.U.: \(M/C_k/1\) queue model with multiple working vacations. Int. J. Appl. Comput. Math. 3, 2729–2744 (2017). https://doi.org/10.1007/s40819-016-0220-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization an overview. Swarm Intell. 1, 33–57 (2007). https://doi.org/10.1007/978-3-540-49774-5-2

    Article  Google Scholar 

  28. Servi, L.D., Finn, S.G.: M/M/1 queues with working vacations (M/M/1/WV). Perform. Eval. 50, 41–52 (2002). https://doi.org/10.1016/S0166-5316(02)00057-3

    Article  Google Scholar 

  29. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization, Proceedings of the 7th international conference on evolutionary programming, New York: Springer, 591–600 (1998)

  30. Shortle, J.F., Thompson, J.M., Gross, D., Harris, C.M.: Fundamentals of queueing theory, John Wiley & Sons, (2018)

  31. Sivatha Sindhu, S.S., Geetha, S., Kannan, A.: Evolving optimised decision rules for intrusion detection using particle swarm paradigm. Int. J. Syst. Sci. 43, 2334–2350 (2012)

    Article  MathSciNet  Google Scholar 

  32. Takagi, H.: Queueing analysis: a foundation of performance evaluation, North-Holland. Amsterdam (1991). https://doi.org/10.1145/122564.1045501

  33. Tian, N., Zhang, Z.G.: Vacation queueing models - theory and applications. Springer. NewYork (2006). https://doi.org/10.1007/978-0-387-33723-4

  34. Upadhyaya, S.: Queueing systems with vacation: an overview. Int. J. Math. Op. Res. 9(2), 167–213 (2016). https://doi.org/10.1504/IJMOR.2016.077996

    Article  MathSciNet  MATH  Google Scholar 

  35. Vijaya Laxmi, P., Girija Bhavani, E., George, A.A.: Retention of impatient customers in a multi-server Markovian queueing system with optional service and working vacations, Communications in Statistics-Theory and Methods, 1-18 (2021). https://doi.org/10.1080/03610926.2021.2004427

  36. Wang, K.H., Chang, Y.C.: Cost analysis of a finite M/M/R queueing system with balking, reneging, and server breakdowns. Math. Methods Op. Res. 56, 169–180 (2002). https://doi.org/10.1007/s001860200206

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, K.H., Liou, C.D., Wang, Y.L.: Profit optimisation of the multiple-vacation machine repair problem using particle swarm optimisation. Int. J. Syst. Sci. 45(8), 1769–1780 (2014). https://doi.org/10.1080/00207721.2012.757378

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, J., Zhang, Y., Zhang, Z.G.: Strategic joining in an M/M/K queue with asynchronous and synchronous multiple vacations. J. Op. Res. Soc. 72(1), 161–179 (2021). https://doi.org/10.1080/01605682.2019.1644978

    Article  Google Scholar 

  39. White, H., Christie, L.S.: Queuing with preemptive priorities or with breakdown. Oper. Res. 6(1), 79–95 (1958)

    Article  MathSciNet  Google Scholar 

  40. Wu, C.H., Ke, J.C.: Computational algorithm and parameter optimization for a multi-server system with unreliable servers and impatient customers. J. Comput. Appl. Math. 235, 547–562 (2010). https://doi.org/10.1016/j.cam.2010.06.005

    Article  MathSciNet  MATH  Google Scholar 

  41. Yoshida, H., Kawata, K., Fukuyama, Y., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15, 1232–1239 (2000). https://doi.org/10.1109/59.898095

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief and the anonymous referees of the journal for their valuable suggestions and comments which help a lot in improving the quality and clarity of the paper. First author is also thankful to CSIR (Council of Scientific and Industrial Research), India for the financial support, file number is 09/1131(0007)/2017-EMR-I.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Choudhary.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, A., Mahla, N. & Sharma, D.C. Cost Optimization of the Queueing System with Degrading Service Rate, Bernoulli Vacation, and a Regular Vacation After Fixed Services. Int. J. Appl. Comput. Math 8, 124 (2022). https://doi.org/10.1007/s40819-022-01319-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01319-z

Keywords

Navigation