Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Non-fragile Observer-Based \({\varvec{H_\infty}} \) Control for Switched Takagi–Sugeno Fuzzy Systems Using Past Output Measurements

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper pays attention to the non-fragile observer-based \(H_\infty \) control problem of switched Takagi-Sugeno (T–S) fuzzy systems, where every subsystem is described by the T–S fuzzy model with local nonlinear terms. Different from the existing observer-based control strategy, a distinguishing feature of this paper is that constructed observers can make full use of current and past output measurements to enhance the performance of the observers in state estimation. However, the introduction of past output measurements has brought challenges to stability analysis and controller design. To tackle these difficulties and design a set of non-fragile fuzzy controllers to stabilize the systems, a new augmented state vector is constructed. First, a new non-fragile observer-based \(H_\infty \) control criterion is deduced based on the fuzzy Lyapunov function method. Then, the method of simultaneously solving observer and controller gains is obtained by introducing free matrix variables and using the linear matrix inequality approach. This solving method is more efficient than the traditional two-step method. Finally, two confirmatory instances are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on a reasonable request.

References

  1. Gavgani, B.M., Farnam, A., Kooning, J.D.M.D., Crevecoeur, G.: Efficiency enhancements of wind energy conversion systems using soft switching multiple model predictive control. IEEE Trans. Energy Convers. 37(2), 1187–1199 (2022)

    Google Scholar 

  2. Shen, Q., Xu, S.Y., Chen, Y.H.: \(H_{\infty }\) filtering for discrete-time cyclic switched systems: relaxed cycle-dependent persistent dwell-time constraints with averaging treatment nonlinear analysis. Hybrid Syst. 51, 101440 (2024)

    Google Scholar 

  3. Zong, G.D., Yang, D., Lam, J., Song, X.Q.: Fault-tolerant control of switched LPV systems: a bumpless transfer approach. IEEE/ASME Trans. Mechatron. 27(3), 1436–1446 (2022)

    Google Scholar 

  4. Hajiahmadi, M., De Schutter, B., Hellendoorn, H.: Robust \(H_\infty \) switching control techniques for switched nonlinear systems with application to urban traffic control. Int. J. Robust Nonlinear Control 26(6), 1286–1306 (2016)

    MathSciNet  Google Scholar 

  5. Liberzon, D.: Switching in systems and control, p. 190. Springer, NY (2003)

    Google Scholar 

  6. Liberzon, D., Morse, A.: Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19(5), 59–70 (1999)

    Google Scholar 

  7. Lee, T.C., Tan, Y., Mareels, I.: Analyzing the stability of switched systems using common zeroing-output systems. IEEE Trans. Autom. Control 62(10), 5138–5153 (2017)

    MathSciNet  Google Scholar 

  8. Zhang, N.K., Kang, Y., Yu, P.L.: Stability analysis of discrete-time switched positive nonlinear systems with unstable subsystems under different switching strategies. IEEE Trans. Circuits Syst. II Express Briefs 68(6), 1957–1961 (2021)

    Google Scholar 

  9. Yuan, S., Lv, M.L., Baldi, S., Zhang, L.X.: Lyapunov-equation-based stability analysis for switched linear systems and its application to switched adaptive control. IEEE Trans. Autom. Control 66(5), 2250–2256 (2021)

    MathSciNet  Google Scholar 

  10. Zhang, G.J., Han, C.S., Guan, Y., Wu, L.G.: Exponential stability analysis and stabilization of discrete-time nonlinear switched systems with time delays. Int. J. Innov. Comput. Inf. Control 8(3), 1973–1986 (2012)

    Google Scholar 

  11. Yang, J., Tong, S.C.: Observer-based output-feedback control design for a class of nonlinear switched T–S fuzzy systems with actuator saturation and time delay. Int. J. Fuzzy Syst. 19, 1333–1343 (2017)

    MathSciNet  Google Scholar 

  12. Zheng, Q.X., Xu, S.Y., Du, B.Z.: Asynchronous nonfragile mixed \(H_\infty \) and \(L_2-L_\infty \) control of switched fuzzy systems with multiple state impulsive jumps. IEEE Trans. Fuzzy Syst. 31(6), 1966–1980 (2023)

    Google Scholar 

  13. Zhao, X.D., Zhang, L.X., Shi, P., Liu, M.: Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Autom. Control 57(7), 1809–1815 (2011)

    MathSciNet  Google Scholar 

  14. Chen, W.Z., Fei, Z.Y., Zhao, X.D., Basin, M.V.: Generic stability criteria for switched nonlinear systems with switching-signal-based Lyapunov functions using Takagi-Sugeno fuzzy model. IEEE Trans. Fuzzy Syst. 30(10), 4239–4248 (2022)

    Google Scholar 

  15. Qi, Y.W., Zhao, X.J., Zhao, X.D.: Event-triggered control for networked switched systems subject to data asynchronization. IEEE Syst. J. 15(4), 5197–5208 (2021)

    Google Scholar 

  16. Jiang, X.S., Tian, S.P., Zhang, W.H.: Weighted \(H_\infty \) performance analysis of nonlinear stochastic switched systems: a mode-dependent average dwell time method. Int. J. Fuzzy Syst. 22, 1454–1467 (2020)

    Google Scholar 

  17. Ahn, C.K., Shi, P., Basin, M.V.: Two-dimensional peak-to-peak filtering for stochastic Fornasini–Marchesini systems. IEEE Trans. Autom. Control 63(5), 1472–1479 (2018)

    MathSciNet  Google Scholar 

  18. Liu, H.W., Zhao, F., Chen, X.Y., Hou, H.Z., Qiu, J.L.: Observer-based finite-time \(H_{\infty }\) sliding mode control of stochastic nonlinear singular systems and its applications. Nonlinear Dyn. 108(4), 3595–3604 (2022)

    Google Scholar 

  19. Zhu, Q.Y., Zhuang, G.M., Xia, J.W., Chen, G.L., Feng, J.E.: Robust \(H_{\infty }\) impulsive control for time-varying delays descriptor jump systems based on impulse instants correlative L-K functional. Nonlinear Dyn. 111(5), 4737–4751 (2023)

    Google Scholar 

  20. Chen, B.S., Wu, P.H.: Robust \(H_\infty \) observer-based reference tracking control design of nonlinear stochastic systems: HJIE-Embedded deep learning approach. IEEE Access 10, 39889–39911 (2022)

    Google Scholar 

  21. Arthi, G., Lee, T.H., Park, J.H., Jung, H.: Non-fragile observer-based passive control for discrete-time systems with repeated scalar non-linearities. IMA J. Math. Control. Inf. 33(3), 893–910 (2016)

    MathSciNet  Google Scholar 

  22. Li, Y.M., Tong, S.C., Liu, L., Feng, G.: Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)

    MathSciNet  Google Scholar 

  23. Tong, S.C., Min, X., Li, Y.X.: Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Trans. Cybern. 50(9), 3903–3913 (2020)

    Google Scholar 

  24. Kong, L.H., He, W., Yang, W.J., Li, Q., Kaynak, O.: Fuzzy approximation-based finite-time control for a robot with actuator saturation under time-varying constraints of work space. IEEE Trans. Cybern. 51(10), 4873–4884 (2021)

    Google Scholar 

  25. Liu, Z.B., Yin, X.Z., Peng, K.R., Wang, X.Z., Chen, Q.: Soft pneumatic actuators adapted in multiple environments: a novel fuzzy cascade strategy for the dynamics control with hysteresis compensation. Mechatronics 84, 102797 (2022)

    Google Scholar 

  26. Precup, R., Preitl, S., Petriu, E.M., Bojan-Dragos, C.-A., Szedlak-Stînean, A.-I., Roman, R.-C., Hedrea, E.-L.: Model-based fuzzy control results for networked control systems. Rep. Mech. Eng. 1, 10–25 (2020)

    Google Scholar 

  27. Chu, Y.D., Fei, J.T., Hou, S.X.: Adaptive global sliding-mode control for dynamic systems using double hidden layer recurrent neural network structure. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1297–1309 (2020)

    MathSciNet  Google Scholar 

  28. Ge, C., Zhang, Z.Y., Zhu, Z.J., Yang, L.: Improved sampled-data controller design for T–S fuzzy systems with an adaptive event-triggered mechanism. Int. J. Fuzzy Syst. 25, 3204–3215 (2023)

    Google Scholar 

  29. Tomescu, M.L., Preitl, S., Precup, R., Tar, J.K.: Stability analysis method for fuzzy control systems dedicated controlling nonlinear processes. Acta Polytech. Hungarica 4, 127–141 (2007)

    Google Scholar 

  30. Zhu, B.L., Wang, H.X., Zhang, J., Zhao, P.: Guaranteed cost impulsive control of nonlinear positive systems via T–S fuzzy model. Int. J. Fuzzy Syst. 24(3), 1467–1477 (2022)

    Google Scholar 

  31. Jin, C.L., Wang, R., Wang, Q.G., Wu, D.: Stabilization of switched fuzzy systems via stabilizing switching-dependent ADT method. IEEE Trans. Fuzzy Syst. 31(2), 547–556 (2023)

    Google Scholar 

  32. Mu, Y.F., Zhang, H.G., Ma, D.Z., Yan, Y.Q.: Robust observer design for T–S fuzzy singular systems with unmeasurable premise variables and partially decoupled disturbances. Nonlinear Dyn. 111(17), 16063–16076 (2023)

    Google Scholar 

  33. Ren, C.C., He, S.P., Luan, X.L., Liu, F., Karimi, H.R.: Finite-time \(L_2\) gain asynchronous control for continuous-time positive hidden Markov jump systems via T–S fuzzy model approach. IEEE Trans. Cybern. 51(1), 77–87 (2021)

    Google Scholar 

  34. Zheng, Q.X., Xu, S.Y., Du, B.Z.: Quantized guaranteed cost output feedback control for nonlinear networked control systems and its applications. IEEE Trans. Fuzzy Syst. 30(7), 2402–2411 (2022)

    Google Scholar 

  35. Wang, M., Qiu, J.B., Feng, G.: A novel piecewise affine filtering design for T–S fuzzy affine systems using past output measurements. IEEE Trans. Cybern. 50(4), 1509–1518 (2020)

    Google Scholar 

  36. Dong, J.X., Wang, Y.Y., Yang, G.H.: Control synthesis of continuous-time T–S fuzzy systems with local nonlinear models. IEEE Trans. Syst. Man Cybern. Part B 39(5), 1245–1258 (2009)

    Google Scholar 

  37. Taghieh, A., Mohammadzadeh, A., Zhang, C., Kausar, N., Castillo, O.: A type-3 fuzzy control for current sharing and voltage balancing in microgrids. Appl. Soft Comput. 129, 109636 (2022)

    Google Scholar 

  38. Amador-Angulo, L., Castillo, O., Castro, J.R., Melin, P.: A new approach for interval type-3 fuzzy control of nonlinear plants. Int. J. Fuzzy Syst. 25, 1624–1642 (2023)

    Google Scholar 

  39. Tejeswi, K.C., Srikant, S.: Attitude control via a feedback integrator based observer. Automatica 151, 110882 (2023)

    MathSciNet  Google Scholar 

  40. Fan, Y.D., Xu, F., Wang, X.Q., Liang, B.: Exclusion tendency-based observer design framework for active fault diagnosis. Automatica 153, 111020 (2023)

    MathSciNet  Google Scholar 

  41. Boroujeni, E.A., Momeni, H.R.: An iterative method to design optimal non-fragile \(H_{\infty }\) observer for Lipschitz nonlinear fractional-order systems. Nonlinear Dyn. 80(4), 1801–1810 (2015)

    MathSciNet  Google Scholar 

  42. Zhuang, G.M., Wang, X., Xia, J.W., Wang, Y.Q.: Observer-based asynchronous feedback \(H_\infty \) control for delayed fuzzy implicit jump systems under HMM and event-trigger mechanisms. Inf. Sci. 631, 45–64 (2023)

    Google Scholar 

  43. Yue, D., Han, Q.L., Peng, C.: State feedback controller design of networked control systems. IEEE Trans. Circuits Syst. II Express Briefs 51(11), 640–644 (2004)

    Google Scholar 

  44. Dong, J.X., Wang, Y.Y., Yang, G.H.: Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B 40(6), 1447–1459 (2010)

    Google Scholar 

  45. Wang, T.C., Tong, S.C.: Observer-based output-feedback asynchronous control for switched fuzzy systems. IEEE Trans. Cybern. 47(9), 2579–2591 (2017)

    Google Scholar 

  46. Shen, H., Xing, M.P., Wu, Z.G., Xu, S.Y., Cao, J.D.: Multiobjective fault-tolerant control for fuzzy switched systems with persistent dwell time and its application in electric circuits. IEEE Trans. Fuzzy Syst. 28(10), 2335–2347 (2020)

    Google Scholar 

  47. Qiu, H.L., Liu, H., Zhang, X.L.: Historical data-driven composite learning adaptive fuzzy control of fractional-order nonlinear systems. Int. J. Fuzzy Syst. 25(3), 1156–1170 (2023)

    Google Scholar 

  48. Zhuang, G.M., Xu, S.Y., Xia, J.W., Ma, Q., Zhang, Z.Q.: Non-fragile delay feedback control for neutral stochastic Markovian jump systems with time-varying delays. Appl. Math. Comput. 355, 21–32 (2019)

    MathSciNet  Google Scholar 

  49. Zhang, P.P., Kao, Y.G., Hu, J., Niu, B.: Robust observer-based sliding mode \(H_\infty \) control for stochastic Markovian jump systems subject to packet losses. Automatica 130, 109665 (2021)

    MathSciNet  Google Scholar 

  50. Xu, X., Açıkmeşe, Behçet., Corless, M.J.: Observer-based controllers for incrementally quadratic nonlinear systems with disturbances. IEEE Trans. Autom. Control 66(3), 1129-1143 (2021)

  51. Zheng, Q.X., Xu, S.Y., Zhang, Z.Q.: Nonfragile quantized \(H_\infty \) filtering for discrete-time switched T–S fuzzy systems with local nonlinear models. IEEE Trans. Fuzzy Syst. 29(6), 1507–1517 (2021)

    Google Scholar 

  52. Peñarrocha, I., Sanchis, R., Albertos, P.: \(H_\infty \) observer design for a class of nonlinear discrete systems. Eur. J. Control. 15(2), 157–165 (2009)

    MathSciNet  Google Scholar 

  53. Zhang, L.X., Boukas, E.K., Shi, P.: Exponential \(H_\infty \) filtering for uncertain discrete-time switched linear systems with average dwell time: A \(\mu \)-dependent approach. Int. J. Robust Nonlinear Control: IFAC–Affiliated J. 18(11), 1188–1207 (2008)

    MathSciNet  Google Scholar 

  54. Zheng, Q.X., Xu, S.Y., Du, B.Z.: Asynchronous resilient state estimation of switched fuzzy systems with multiple state impulsive jumps. IEEE Trans. Cybern. 53(12), 7966–7979 (2023)

    Google Scholar 

  55. Hong, Y.Z., Zhang, H.B., Zheng, Q.X.: Asynchronous \(H_{\infty }\) filtering for switched T–S fuzzy systems and its application to the continuous stirred tank reactor. IEEE Trans. Fuzzy Syst. 20(5), 1470–1482 (2018)

    MathSciNet  Google Scholar 

  56. Yang, D., Zong, G.D., Su, S.F.: \(H_{\infty }\) tracking control of uncertain Markovian hybrid switching systems: a fuzzy switching dynamic adaptive control approach. IEEE Trans. Cybern. 52(5), 3111–3122 (2022)

    Google Scholar 

  57. Glyzin, S.D., Kolesov, A.Y.: Self-oscillatory processes in a discrete-line with a tunnel diode. Theor. Math. Phys. 215(2), 636–651 (2023)

    MathSciNet  Google Scholar 

  58. Chang, X.H., Xiong, J., Park, J.H.: Estimation for a class of parameter-controlled tunnel diode circuits. IEEE Trans. Syst. Man Cybern. Syst. 50(11), 4697–4707 (2020)

    Google Scholar 

Download references

Funding

This work was supported by the Natural Science Research Project of Colleges and Universities of Anhui Province (Grant No. 2023AH040123), the Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices (Grant No. JCKJ2022A05), and the National Natural Science Foundation of China (Grant Nos. 61803001, 62363005, 62273005).

Author information

Authors and Affiliations

Authors

Contributions

Zhongzhang Xiao: Conceptualization, Writing-original draft, Formal analysis, Software, Validation. Qunxian Zheng: Funding acquisition, Methodology, Resources, Supervision, Writing-review and editing. Xinya Mao: Visualization. Xiang Wu: Reviewing.

Corresponding author

Correspondence to Qunxian Zheng.

Ethics declarations

Conflict of interest

The authors report no known competing financial interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Zheng, Q., Mao, X. et al. Non-fragile Observer-Based \({\varvec{H_\infty}} \) Control for Switched Takagi–Sugeno Fuzzy Systems Using Past Output Measurements. Int. J. Fuzzy Syst. 26, 2658–2674 (2024). https://doi.org/10.1007/s40815-024-01753-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01753-9

Keywords

Navigation