Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Predictive Control for Takagi–Sugeno Fuzzy Large-Scale Networked Control Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, the issue of exponential stabilization and sampled-data controller design for Takagi–Sugeno fuzzy large-scale networked control systems is studied by using the reduction-based ordinary differential equation prediction method. For the problem that matrices cannot be multiplied directly during the process of designing the sampled-data controller in this paper, a matrix dimensional transformation method is proposed. Firstly, a type of two-sided mode-dependent loop-based Lyapunov–Krasovskii functional is constructed, which compensates for the large delay and makes fuller use of the information in sampled-data interval. Secondly, the proposed method is used to give the design scheme of an aperiodic sampled-data controller, and furthermore, an iterative algorithm to verify the effectiveness of the requested control gains is provided. Finally, two coupled vehicle pendulum systems and two-area interconnected power systems are applied to demonstrate the efficiency of the presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Ji, W., Fu, S., Chen, H., Qiu, J.: Asynchronous decentralized fuzzy observer-based output feedback control of nonlinear large-scale systems. Int. J. Fuzzy Syst. 21(1), 19–32 (2019)

    Article  MathSciNet  Google Scholar 

  2. Kouki, M., Marinescu, B., Xavier, F.: Exhaustive modal analysis of large-scale interconnected power systems with high power electronics penetration. IEEE Trans. Power Syst. 35(4), 2759–2768 (2020)

    Article  Google Scholar 

  3. Tan, L.N.: Event-triggered distributed \({H}_{\infty }\) constrained control of physically interconnected large-scale partially unknown strict-feedback systems. IEEE Trans. Syst. Man Cybern. Syst. 51(4), 2444–2456 (2021)

    Article  Google Scholar 

  4. Santos, T.L., Franklin, T.S.: Distributed predictor-based stabilization of interconnected systems with network induced delays. Inf. Sci. 564, 368–383 (2021)

    Article  MathSciNet  Google Scholar 

  5. Azimi, M.M., Afzalian, A.A., Ghaderi, R.: Decentralized stabilization of a class of large scale networked control systems based on modified event-triggered scheme. Int. J. Dyn. Control. 9(1), 149–159 (2021)

    Article  MathSciNet  Google Scholar 

  6. Li, Y., Song, F., Liu, J., Xie, X., Tian, E.: Software defined event-triggering control for large-scale networked systems subject to stochastic cyber attacks. IEEE Trans. Control Netw. Syst. (2023). https://doi.org/10.1109/TCNS.2022.3233925

    Article  Google Scholar 

  7. Yu, T., Xiong, J.: Distributed networked controller design for large-scale systems under round-robin communication protocol. IEEE Trans. Control Netw. Syst. 7(3), 1201–1211 (2020)

    Article  MathSciNet  Google Scholar 

  8. Liang, X., Qi, Q., Zhang, H., Xie, L.: Decentralized control for networked control systems with asymmetric information. IEEE Trans. Autom. Control 67(4), 2076–2083 (2022)

    Article  MathSciNet  Google Scholar 

  9. Younsi, L.E., Benzaouia, A., Hajjaji, A.E.: Decentralized control design for switching fuzzy large-scale T-S systems by switched lyapunov function with \({H}_{\infty }\) performance. Int. J. Fuzzy Syst. 21, 1104–1116 (2019)

    Article  MathSciNet  Google Scholar 

  10. Sun, X., Zhang, Q.: Observer-based adaptive sliding mode control for T-S fuzzy singular systems. IEEE Trans. Syst. Man. Cybern. Syst. 50(11), 4438–4446 (2020)

    Article  Google Scholar 

  11. Jing, Y.H., Yang, G.H.: Fuzzy adaptive fault-tolerant control for uncertain nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Trans. Fuzzy Syst. 27(12), 2265–2278 (2019)

    Article  Google Scholar 

  12. Xia, J., Wang, L., Su, S.F., Chen, G., Shen, H., Yeh, R.H.: Improved reachable set estimation and aperiodic sampled-data for T-S fuzzy markovian jump systems. IEEE Trans. Syst. Man Cybern. Syst. 53(5), 3241–3254 (2023)

    Article  Google Scholar 

  13. Sarbaz, M., Zamani, I., Manthouri, M., Ibeas, A.: Hierarchical optimization-based model predictive control for a class of discrete fuzzy large-scale systems considering time-varying delays and disturbances. Int. J. Fuzzy Syst. 24(4), 2107–2130 (2022)

    Article  Google Scholar 

  14. Bi, W., Wang, T.: Adaptive fuzzy decentralized control for nonstrict feedback nonlinear systems with unmodeled dynamics. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 275–286 (2022)

    Article  Google Scholar 

  15. Tong, S., Li, Y., Liu, Y.: Observer-based adaptive neural networks control for large-scale interconnected systems with nonconstant control gains. IEEE Trans. Neural Netw. Learn. Syst. 32(4), 1575–1585 (2021)

    Article  MathSciNet  Google Scholar 

  16. Wang, H., Liu, P.X., Bao, J., Xie, X.J., Li, S.: Adaptive neural output-feedback decentralized control for large-scale nonlinear systems with stochastic disturbances. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 972–983 (2020)

    Article  MathSciNet  Google Scholar 

  17. Zhang, J., Li, S., Ahn, C.K., Xiang, Z.: Decentralized event-triggered adaptive fuzzy control for nonlinear switched large-scale systems with input delay via command-filtered backstepping. IEEE Trans. Fuzzy Syst. 30(6), 2118–2123 (2022)

    Article  Google Scholar 

  18. Zhang, Q., Zhai, D., Dong, J.: Observer-based adaptive fuzzy decentralized control of uncertain large-scale nonlinear systems with full state constraints. Int. J. Fuzzy Syst. 21, 1085–1103 (2019)

    Article  MathSciNet  Google Scholar 

  19. Sun, J., Zeng, Z.: Periodic event-triggered control for networked control systems with external disturbance and input and output delays. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3164214

    Article  Google Scholar 

  20. Zeng, H.B., He, Y., Teo, K.L.: Monotone-delay-interval-based lyapunov functionals for stability analysis of systems with a periodically varying delay. Automatica 138, 110030 (2022)

    Article  MathSciNet  Google Scholar 

  21. Sun, H.Y., Yang, H.Y., Han, H.G., Sun, J., Qiao, J.F.: Consensus of mass with input and communication delays by predictor-based protocol. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3192864

    Article  Google Scholar 

  22. Zhao, Y., Gao, H., Xu, S., Kao, Y.: Predictor-feedback stabilization of two-input nonlinear systems with distinct and state-dependent input delays. Automatica 144, 110479 (2022)

    Article  MathSciNet  Google Scholar 

  23. Lou, Y., He, Y., Wang, L., Chen, G.: Predicting network controllability robustness: a convolutional neural network approach. IEEE Trans. Cybern. 52(5), 4052–4063 (2022)

    Article  Google Scholar 

  24. Zhu, Y., Fridman, E.: Observer-based decentralized predictor control for large-scale interconnected systems with large delays. IEEE Trans. Autom. Control 66(6), 2897–2904 (2021)

    Article  MathSciNet  Google Scholar 

  25. Shangguan, X.C., Zhang, C.K., He, Y., Jin, L., Jiang, L., Spencer, J.W., Wu, M.: Robust load frequency control for power system considering transmission delay and sampling period. IEEE Trans. Industr. Inf. 17(8), 5292–5303 (2021)

    Article  Google Scholar 

  26. Sun, H.Y., Han, H.G., Sun, J., Yang, H.Y., Qiao, J.F.: Security control of sampled-data T-S fuzzy systems subject to cyber attacks and successive packet losses. IEEE Trans. Fuzzy Syst. 31(4), 1178–88 (2022)

    Article  Google Scholar 

  27. Zheng, X., Li, H., Ahn, C.K., Yao, D.: Nn-based fixed-time attitude tracking control for multiple unmanned aerial vehicles with nonlinear faults. IEEE Trans. Aerosp. Electron. Syst. 59(2), 1738 (2022)

    Google Scholar 

  28. Wu, Y., Su, H., Shi, P., Shu, Z., Wu, Z.G.: Consensus of multiagent systems using aperiodic sampled-data control. IEEE Trans. Cybern. 46(9), 2132–2143 (2016)

    Article  Google Scholar 

  29. Fujioka, H.: A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices. IEEE Trans. Autom. Control 54(10), 2440–2445 (2009)

    Article  MathSciNet  Google Scholar 

  30. Kao, C.Y.: An IQC approach to robust stability of aperiodic sampled-data systems. IEEE Trans. Autom. Control 61(8), 2219–2225 (2016)

    Article  MathSciNet  Google Scholar 

  31. Briat, C.: Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints. Automatica 49(11), 3449–3457 (2013)

    Article  MathSciNet  Google Scholar 

  32. Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2010)

    Article  MathSciNet  Google Scholar 

  33. Seuret, A.: A novel stability analysis of linear systems under asynchronous samplings. Automatica 48(1), 177–182 (2012)

    Article  MathSciNet  Google Scholar 

  34. Zeng, H.B., He, Y., Wu, M., She, J.: New results on stability analysis for systems with discrete distributed delay. Automatica 60, 189–192 (2015)

    Article  MathSciNet  Google Scholar 

  35. Chen, G., Xia, J., Park, J.H., Shen, H., Zhuang, G.: Sampled-data synchronization of stochastic Markovian jump neural networks with time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 33(8), 3829–3841 (2022)

    Article  MathSciNet  Google Scholar 

  36. Freirich, D., Fridman, E.: Decentralized networked control of systems with local networks: a time-delay approach. Automatica 69, 201–209 (2016)

    Article  MathSciNet  Google Scholar 

  37. Zhu, Y., Fridman, E.: Predictor methods for decentralized control of large-scale systems with input delays. Automatica 116, 108903 (2020)

    Article  MathSciNet  Google Scholar 

  38. Chang, W.J., Su, C.L., Ku, C.C.: Passive decentralized fuzzy control for Takagi–Sugeno fuzzy model based large-scale descriptor systems. IEEE Access. 10, 28656–28669 (2022)

    Article  Google Scholar 

  39. Mi, Y., Fu, Y., Wang, C., Shang, Wang, P.: Decentralized sliding mode load frequency control for multi-area power systems. IEEE Trans. Power Syst. 28, 4301–4309 (2013)

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 62373178, 62273201; the Research Fund for the Taishan Scholar Project of Shandong Province of China under Grant tstp20230629.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Xia, J., Shen, H. et al. Predictive Control for Takagi–Sugeno Fuzzy Large-Scale Networked Control Systems. Int. J. Fuzzy Syst. 26, 1107–1119 (2024). https://doi.org/10.1007/s40815-023-01636-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01636-5

Keywords

Navigation