Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

New Framework for Fuzzy Logic Reasoning: A Robust Control Theoretic Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Fuzzy reasoning gathered significant attention for its extensive utility since it was introduced. This work puts emphasis on its theoretical aspects and presents a framework for fuzzy logic reasoning considering time-varying uncertainty based on robust control theory. The proposed framework is built upon one basic setting, the Fundamental Axiom of Reasoning, which provides a criterion to demonstrate the validness of a chain reasoning by analytically quantifying its truth value based on multiple fuzzy implication models. The fuzzy reasoning system is casted to a dynamic system where the reasoning process is proactively controlled without violating the basic setting. The time-varying uncertainty in system variables or parameters is addressed by involving the delicately designed robust control. Furthermore, the diverse ways in which time-varying uncertainty impacts the system are also discussed, from modeling stage to control stage. Finally, an automated speed control problem with time-varying uncertainty is considered to demonstrate how to apply the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability statment

The datasets generated or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zadeh, L.A.: Fuzzy logic and approximate reasoning. Synthese 30(3), 407–428 (1975)

    Article  Google Scholar 

  2. Yang, Z., Huang, J., Yang, D., Zhong, Z.: Design and optimization of robust path tracking control for autonomous vehicles with fuzzy uncertainty. IEEE Trans. Fuzzy Syst. 30(6), 1788–1800 (2021)

    Article  Google Scholar 

  3. Song, Z., Hou, J., Xu, S., Ouyang, M., Li, J.: The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses. Energy 135, 91–100 (2017)

    Article  Google Scholar 

  4. Tsai, J.T., Chou, P.Y., Chou, J.H.: Color filter polishing optimization using Anfis with sliding-level particle swarm optimizer. IEEE Trans. Syst. Man Cybern. 50(3), 1193–1207 (2020). https://doi.org/10.1109/TSMC.2017.2776158

    Article  Google Scholar 

  5. Ji, X., Yang, K., Na, X., Lv, C., Liu, Y., Liu, Y.: Feedback game-based shared control scheme design for emergency collision avoidance: a fuzzy-linear quadratic regulator approach. J. Dyn. Syst. Meas. Control 141(8), 081005 (2019)

    Article  Google Scholar 

  6. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC–3(1), 28–44 (1973)

    Article  MathSciNet  Google Scholar 

  7. Chen, S.M.: A new approach to handling fuzzy decision-making problems. IEEE Trans. Syst. Man Cybern. 18(6), 1012–1016 (1988)

    Article  Google Scholar 

  8. Yeung, D.S., Tsang, E.C.: Improved fuzzy knowledge representation and rule evaluation using fuzzy petri nets and degree of subsethood. Int. J. Intell. Syst. 9(12), 1083–1100 (1994)

    Article  Google Scholar 

  9. Ding, L., Shen, Z., Mukaidono, M.: A new method for approximate reasoning. In: Proceedings of the Nineteenth International Symposium on Multiple-Valued Logic, pp. 179–185. IEEE Computer Society, Los Alamitos, CA, USA (1989)

  10. Mukaidono, M., Ding, L., Shen, Z.: Approximate reasoning based on revision principle. In: Proceedings of NAFIPS’90, vol. 1, pp. 94–97 (1990)

  11. Mizumoto, M., Zimmermann, H.J.: Comparison of fuzzy reasoning methods. Fuzzy Sets Syst. 8(3), 253–283 (1982)

    Article  MathSciNet  Google Scholar 

  12. Nakanishi, H., Turksen, I., Sugeno, M.: A review and comparison of six reasoning methods. Fuzzy Sets Syst. 57(3), 257–294 (1993)

    Article  MathSciNet  Google Scholar 

  13. Zadeh, L.A.: A rationale for fuzzy control. J. Dyn. Syst. Meas. Control 94(1), 3–4 (1972)

    Article  MathSciNet  Google Scholar 

  14. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  Google Scholar 

  15. Nguyen, A.-T., Taniguchi, T., Eciolaza, L., Campos, V., Palhares, R., Sugeno, M.: Fuzzy control systems: past, present and future. IEEE Comput. Intell. Mag. 14(1), 56–68 (2019)

    Article  Google Scholar 

  16. Zhan, J., Wang, J., Ding, W., Yao, Y.: Three-way behavioral decision making with hesitant fuzzy information systems: survey and challenges. IEEE/CAA J. Autom. Sin. (2022)

  17. Xu, T.-T., Qin, J.-D.: A new representation method for type-2 fuzzy sets and its application to multiple criteria decision making. Int. J. Fuzzy Syst. 25(3), 1171–1190 (2023)

    Article  Google Scholar 

  18. Javed, S.A., Mahmoudi, A., Liu, S.: Grey absolute decision analysis (gada) method for multiple criteria group decision-making under uncertainty. Int. J. Fuzzy Syst. 22(4), 1073–1090 (2020)

    Article  Google Scholar 

  19. Hwang, C.L., Lai, J.Y., Lin, Z.S.: Sensor-fused fuzzy variable structure incremental control for partially known nonlinear dynamic systems and application to an outdoor quadrotor. IEEE/ASME Trans. Mechatron. 25(2), 716–727 (2020). https://doi.org/10.1109/TMECH.2020.2972295

    Article  Google Scholar 

  20. Vu, V.P., Wang, W.J.: Decentralized observer-based controller synthesis for a large-scale polynomial T-S fuzzy system with nonlinear interconnection terms. IEEE Trans. Cybern. 51(6), 3312–3324 (2021). https://doi.org/10.1109/TCYB.2019.2948647

    Article  PubMed  Google Scholar 

  21. Qin, Z., Chen, L., Hu, M., Chen, X.: A lateral and longitudinal dynamics control framework of autonomous vehicles based on multi-parameter joint estimation. IEEE Trans. Veh. Technol. 71(6), 5837–5852 (2022)

    Article  Google Scholar 

  22. Song, Z., Li, J., Shuai, Z., Xu, L., Ouyang, M.: Fuzzy logic torque control system in four-wheel-drive electric vehicles for active damping vibration control. Int. J. Veh. Des. 68(1–3), 55–80 (2015)

    Article  Google Scholar 

  23. Zhang, K., Hao, W.-N., Yu, X.-H., Jin, D.-W., Yu, K.: A fuzzy neural network classifier and its dual network for adaptive learning of structure and parameters. Int. J. Fuzzy Syst. 1–21 (2022)

  24. Bělohlávek, R., Dauben, J.W., Klir, G.J.: Fuzzy Logic and Mathematics: A Historical Perspective. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  25. Turksen, I., Zhong, Z.: An approximate analogical reasoning schema based on similarity measures and interval-valued fuzzy sets. Fuzzy Sets Syst. 34(3), 323–346 (1990)

    Article  Google Scholar 

  26. Wang, L.: Fuzzy systems: challenges and chance-my experiences and perspectives. Acta Automatica Sinica 27(4), 585–590 (2001)

    Google Scholar 

  27. Chen, Y.H.: A revisit to the liar. J. Franklin Inst. 336(6), 1023–1033 (1999)

    Article  MathSciNet  Google Scholar 

  28. Chen, Y.H.: Approximate reasoning mechanism: internal, external, and hybrid. J. Intell. Fuzzy Syst. 8(2), 121–133 (2000)

    Google Scholar 

  29. Meng, T., Zhang, W., Huang, J., Chen, Y.-H., Chew, C.-M., Yang, D., Zhong, Z.: Fuzzy reasoning based on truth-value progression: a control-theoretic design approach. Int. J. Fuzzy Syst. 1–20 (2023)

  30. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  Google Scholar 

  31. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic, vol. 4. Prentice Hall, New Jersey (1995)

    Google Scholar 

  32. Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control 26(5), 1139–1144 (1981)

    Article  MathSciNet  Google Scholar 

  33. De, A.K., Chakraborty, D., Biswas, A.: Literature review on type-2 fuzzy set theory. Soft. Comput. 26(18), 9049–9068 (2022)

    Article  Google Scholar 

  34. Castillo, O., Castro, J.R., Melin, P.: Interval Type-3 Fuzzy Systems: Theory and Design. Springer, Berlin (2022)

    Book  Google Scholar 

Download references

Acknowledgements

This research is sponsored in part by the key R&D projects of the ministry of science and technology (No. 2020YFB1710901) and in part by the NSFC Program (No. 61872217, No. U20A20285, No. 52122217, No. U1801263). This research is also sponsored by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8691 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, T., Huang, J., Chen, YH. et al. New Framework for Fuzzy Logic Reasoning: A Robust Control Theoretic Approach. Int. J. Fuzzy Syst. 26, 463–481 (2024). https://doi.org/10.1007/s40815-023-01606-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01606-x

Keywords

Navigation