Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Non-linear Control System Using Function-Link Fuzzy Brain Emotional Controller

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper portrays the design, operation, and application of an artificial neural network-based intelligent controller, the structure of which is constructed by integrating a function-link neural network with a fuzzy brain emotional learning controller (FBELC). The resulting model is called the function-link fuzzy brain emotional learning controller (FLFBELC). The FBELC consists of two sets of neural networks inspired by the two sets of systems of the brain, the orbitofrontal cortex and amygdala, which are responsible for decision-making and emotional response, respectively. These two networks are the sensory network and the emotional network, which affect each other’s learning capabilities and are jointly responsible for the control output of the controller. The function-link neural network (FLNN) is a method shown to facilitate faster convergence and reduce computational load through function approximation. The FLNN structure is integrated with the FBELC, with the resulting controller’s intent to acquire these characteristics. The weights of the proposed FLFBELC network can be approximated using function expansions of the control system’s input. Finally, the FLFBELC is applied for the tracking control of nonlinear systems to illustrate the effectiveness of the proposed control method. The results are compared to other recent controllers to contrast the favorable performance of the FLFBELC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bai, W., Zhou, Q., Li, T., Li, H.: Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans. Cybern. 50(8), 3433–3443 (2020)

    Article  PubMed  Google Scholar 

  2. Liu, Y.-J., Zeng, Q., Tong, S., Chen, C.L.P., Liu, L.: Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints. IEEE Trans. Industr. Electron. 66(12), 9458–9466 (2019)

    Article  Google Scholar 

  3. Pan, Y., Yanmin, Wu., Lam, H.-K.: Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans. Fuzzy Syst. 30(10), 4359–4368 (2022)

    Article  Google Scholar 

  4. Liang, Y.-H., Chen, L., Pan, Y., Lam, H.-K.: Fuzzy-based robust precision consensus tracking for uncertain networked systems with cooperative–antagonistic interactions. IEEE Trans. Fuzzy Syst. 31(4), 1362–1376 (2023)

    Article  Google Scholar 

  5. Cao, L., Cheng, Z., Liu, Y., Li, H.: Event-based adaptive NN fixed-time cooperative formation for multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3210269

    Article  PubMed  Google Scholar 

  6. Albus, J.S.: A new approach to manipulator control: the Cerebellar Model Articulation Controller (CMAC). J. Dyn. Syst. Meas. Control Trans. Asme 97(3), 220–227 (1975)

    Article  Google Scholar 

  7. Nesse, R.: Emotional disorders in evolutionary perspective. Br. J. Med. Psychol. 71(4), 397–415 (1998)

    Article  PubMed  Google Scholar 

  8. Greene, J.D.: An fMRI investigation of emotional engagement in moral judgment. Science 293(5537), 2105–2108 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Ledoux, J.: Emotion and the limbic system concept. Concepts Neurosci. 2, 169–199 (1991)

    Google Scholar 

  10. Cador, M., Robbins, T.W., Everitt, B.J.: Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience 30(1), 77–86 (1989)

    Article  CAS  PubMed  Google Scholar 

  11. D. Gaffan, “Amygdala and the memory of reward.,” The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction, pp. 471–483, 1992.

  12. LeDoux, J.E.: Emotion and the amygdala. In: The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction, pp. 339–351 (1992)

  13. LeDoux, J.E.: Emotional memory systems in the brain. Behav. Brain Res. 58(1–2), 69–79 (1993)

    Article  CAS  PubMed  Google Scholar 

  14. Balkenius, C., MorEn, J.: Emotional learning: a computational model of the amygdala. Cybern. Syst. 32(6), 611–636 (2001)

    Article  Google Scholar 

  15. Lucas, C., Shahmirzadi, D., Sheikholeslami, N.: Introducing belbic: brain emotional learning based intelligent controller. Intell. Autom. Soft Comput. 10(1), 11–21 (2004)

    Article  Google Scholar 

  16. Lin, C.-M., Muthusamy, P.K.: Intelligent brain emotional learning control system design for nonlinear systems. IEEE Xplore (2017)

  17. Wu, Q., et al.: Self-organizing brain emotional learning controller network for intelligent control system of mobile robots. IEEE Access 6, 59096–59108 (2018)

    Article  Google Scholar 

  18. Murugan, S., Le, T.-L., Quan, P.N.: Adaptive noise cancellation using petri fuzzy brain emotional learning-based neural network. In: 2022 6th International Conference on Green Technology and Sustainable Development (GTSD), pp. 537–542. IEEE (2022)

  19. Milad, H.S.A., Farooq, U., El-Hawary, M.E., Asad, M.U.: Neo-fuzzy integrated adaptive decayed brain emotional learning network for online time series prediction. IEEE Access 5, 1037–1049 (2017)

    Article  Google Scholar 

  20. Le, T.-L., Lin, C.-M.: Self-evolving type-2 fuzzy brain emotional learning control design for chaotic systems using PSO. Appl. Soft Comput. 73, 418–433 (2018)

    Article  Google Scholar 

  21. Lin, C.-M., Pham, D.-H., Huynh, T.-T.: Encryption and decryption of audio signal and image secure communications using chaotic system synchronization control by TSK fuzzy brain emotional learning controllers. IEEE Trans. Cybern. 52(12), 13684–13698 (2022)

    Article  PubMed  Google Scholar 

  22. Zhao, J., Zhong, Z., Lin, C.-M., Lam, H.-K.: Tracking control for nonlinear multivariable systems using wavelet-type TSK fuzzy brain emotional learning with particle swarm optimization. J. Franklin Inst. 358(1), 650–673 (2021)

    Article  MathSciNet  Google Scholar 

  23. Ahmadi Kamarposhti, M., Shokouhandeh, H., Colak, I., Eguchi, K.: Performance improvement of reluctance synchronous motor using brain emotional learning based intelligent controller. Electronics 10(21), 2595 (2021)

    Article  Google Scholar 

  24. Pao, Y.-H., Takefuji, Y.: Functional-link net computing: theory, system architecture, and functionalities. Computer 25(5), 76–79 (1992)

    Article  Google Scholar 

  25. Hassim, Y.M.M., Ghazali, R.: Functional link neural network—artificial bee colony for time series temperature prediction. In: International Conference on Computational Science and Its Applications, pp. 427–437 (2013)

  26. Lin, C.-M., Liu, Y.-L., Li, H.-Y.: SoPC-based function-link cerebellar model articulation control system design for magnetic ball levitation systems. IEEE Trans. Industr. Electron. 61(8), 4265–4273 (2014)

    Article  Google Scholar 

  27. Patra, J.C., Pal, R.N.: A functional link artificial neural network for adaptive channel equalization. Signal Process. 43(2), 181–195 (1995)

    Article  Google Scholar 

  28. Le, T.-L., Quynh, N.V., Long, N.K., Hong, S.K.: Optimum design of function-link Type-2 fuzzy asymmetric CMAC based on self-organizing algorithm and modified jaya algorithm. IEEE Access 8, 202365–202378 (2020)

    Article  Google Scholar 

  29. Li, L., Qu, X., Zhang, J., Li, H., Ran, B.: Travel time prediction for highway network based on the ensemble empirical mode decomposition and random vector functional link network. Appl. Soft Comput. 73, 921–932 (2018)

    Article  Google Scholar 

  30. Zhang, P.-B., Yang, Z.-X.: A new learning paradigm for random vector functional-link network: RVFL+. Neural Netw. 122, 94–105 (2020)

    Article  PubMed  Google Scholar 

  31. Zhou, Z., Liu, D., Guo, J., Zhang, J., Zhu, Z., Wang, C.: Dyed fabric illumination estimation with regularized random vector function link network. Color. Res. Appl. 46(2), 376–387 (2020)

    Article  Google Scholar 

  32. Le, D.D., Le, V.B., Dang, T.S., Nguyen, M.C.: Nonlinear adaptive filter based on pipelined bilinear function link neural networks architecture. In: The International Conference on Intelligent Systems & Networks, pp. 256–264 (2021)

  33. Cui, M., Liu, H., Li, Z., Tang, Y., Guan, X.: Identification of Hammerstein model using functional link artificial neural network. Neurocomputing 142, 419–428 (2014)

    Article  Google Scholar 

  34. Hu, J., Wang, C., Wu, M., Du, Y., He, Y., She, J.: Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system. Neurocomputing 151, 278–287 (2015)

    Article  Google Scholar 

  35. Lin, C.-M., Lin, M.-H., Li, H.-Y.: Adaptive wavelet cerebellar-model-articulation-controller design for MIMO nonlinear systems. IEEE Xplore (2010)

  36. Lin, C.-M., Le, T.-L.: WCMAC-based control system design for nonlinear systems using PSO. J. Intell. Fuzzy Syst. 33(2), 807–818 (2017)

    Article  Google Scholar 

  37. Lin, C.-M., Huynh, T.-T., Le, T.-L.: Adaptive TOPSIS fuzzy CMAC back-stepping control system design for nonlinear systems. Soft. Comput. 23, 6947–6966 (2019)

    Article  Google Scholar 

  38. Le, T.-L., Lin, C.-M., Huynh, T.-T.: Interval type-2 Petri CMAC design for 4D chaotic system. In: 2019 International Conference on System Science and Engineering (ICSSE), pp. 420–424. IEEE (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Loc Le.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, S., Anh, L.H. & Le, TL. Non-linear Control System Using Function-Link Fuzzy Brain Emotional Controller. Int. J. Fuzzy Syst. 26, 434–448 (2024). https://doi.org/10.1007/s40815-023-01603-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01603-0

Keywords

Navigation