Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Attribute Reduction Approach Using Evidence Theory for Hesitant Fuzzy Data Sets

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

For decision makers in various fields, the best way to deal with complicated decision-making problems quickly and efficiently is to simplify the complicated problems as much as possible. Inspired by this kind of social management demand, this paper proposes a novel attribute reduction method using evidence theory in hesitant fuzzy data sets. The method ensures belief and plausibility sum and considers internal and external significance measures. It extends classical evidence theory to hesitant fuzzy data sets and introduces internal and external belief significance measures and internal and external plausibility significance measures based on belief and plausibility functions. The properties of belief and plausibility reduction in hesitant fuzzy data sets are studied, along with the relationship between internal and external significance measures. The attribute reduction method based on significance measure has significant effects on complex information systems and can improve the execution efficiency of decision-makers. And the impressive application value of these theories is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zadeh, L.A.: Fuzzy sets. Inform. Control 8(3), 338–356 (1965)

    Article  Google Scholar 

  2. Turksen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 20(2), 191–210 (1986)

    Article  MathSciNet  Google Scholar 

  3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  Google Scholar 

  4. Atanassov, K.T., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)

    Article  MathSciNet  Google Scholar 

  5. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    Google Scholar 

  6. Xu, Z.S., Xia, M.M.: Distance and similarity measures for hesitant fuzzy sets. Inform. Sci. 181(11), 2128–2138 (2011)

    Article  MathSciNet  Google Scholar 

  7. Peng, D.H., Gao, C.Y.: Generalized hesitant fuzzy synergetic weighted distance meeasures and their application to multiple criteria decision-making. Appl. Math. Modell. 37(8), 5837–5850 (2013)

    Article  Google Scholar 

  8. Xia, M.M., Xu, Z.S.: Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 52, 395–407 (2011)

    Article  MathSciNet  Google Scholar 

  9. Yu, D.J.: Some hesitant fuzzy information aggregation operators based on Einstein operational laws. Int. J. Intell. Syst. 29, 320–340 (2014)

    Article  Google Scholar 

  10. Zhang, N., Wei, G.W.: Extension of VIKOR method for decision making problem based on hesitant fuzzy set. Appl. Math. Modell. 37, 4938–4947 (2013)

    Article  MathSciNet  Google Scholar 

  11. Liao, H.C., Xu, Z.S.: A VIKOR-based method for hesitant fuzzy multi-criteria decision making. Fuzzy Optim. Decis. Mak. 12(4), 373–392 (2013)

    Article  MathSciNet  Google Scholar 

  12. Zhu, B., Xu, Z.S., Xu, J.P.: Deriving a ranking from hesitant fuzzy preference relations under group decision making. IEEE Trans. Syst. 44(8), 1328–1337 (2014)

    Google Scholar 

  13. Liao, H.C., Xu, Z.S., Xia, M.M.: Multiplicative consistency of hesitant fuzzy preference relation and its application in group decision making. Int. J. Inform. Technol. Decis. Mak. 13(1), 47–76 (2014)

    Article  Google Scholar 

  14. Xia, M.M., Xu, Z.S.: Managing hesitant information in GDM problems under fuzzy and multiplicative preference relations. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 21(6), 865–897 (2013)

    Article  MathSciNet  Google Scholar 

  15. Farhadinia, B.: A novel method of ranking hesitant fuzzy values for multiple attribute decision making problems. Int. J. Intell. Syst. 28(8), 752–767 (2013)

    Article  Google Scholar 

  16. Farhadinia, B.: A series of score functions for hesitant fuzzy sets. Inform. Sci. 277, 102–110 (2014)

    Article  MathSciNet  Google Scholar 

  17. Xu, W.H., Li, W.T.: Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans. Cybern. 46(2), 366–379 (2016)

    Article  MathSciNet  Google Scholar 

  18. Li, J.H., Mei, C.L., Xu, W.H., Qian, Y.H.: Concept learning via granular computing: a cognitive view point. Inform. Sci. 298(1), 447–467 (2015)

    Article  MathSciNet  Google Scholar 

  19. Skowron, A.: The rough sets theory and evidence theory. Fundam. Inform. 13, 245–262 (1990)

    Article  MathSciNet  Google Scholar 

  20. Wu, W.Z.: Attribute reduction based on evidence theory in incomplete decision systems. Inform. Sci. 178, 1355–1371 (2008)

    Article  MathSciNet  Google Scholar 

  21. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  22. Chakhar, S., Ishizaka, A., Labib, A., Saad, I.: Dominance-based rough set approach for group decisions. Eur. J. Oper. Res. 251, 206–224 (2016)

    Article  MathSciNet  Google Scholar 

  23. Zhang, X.Y., Li, J.R.: Incremental feature selection approach to interval-valued fuzzy decision information systems based on \(\lambda\)-fuzzy similarity selfinformation. Inform. Sci. 625, 593–619 (2023)

    Article  Google Scholar 

  24. Xu, W.H., Yuan, K.H., Li, W.T., Ding, W.P.: An emerging fuzzy feature selection method using composite entropy-based uncertainty measure and data distribution. IEEE Trans. Emerg. Top. Comput. Intell. 7(1), 76–88 (2023)

    Article  Google Scholar 

  25. Li, W.T., Zhai, S.C., Xu, W.H., Pedrycz, W., Qian, Y.H., Ding, W.P.: Feature selection approach based on improved fuzzy c-means with principle of refined justifiable granularity. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3217377

    Article  Google Scholar 

  26. Wang, C., He, Q., Shao, M., Xua, Y., Hu, Q.: A unified information measure for general binary relations. Knowl. Based Syst. 135(1), 18–28 (2017)

    Article  Google Scholar 

  27. Xu, W.H., Zhang, X.Y., Zhong, J.M., Zhang, W.X.: Attribute reduction in ordered information system based on evidence theory. Knowl. Inform. Syst. 25, 169–184 (2010)

    Article  Google Scholar 

  28. Wu, W.Z., Zhang, M., Li, H.Z., Mi, J.S.: Knowledge reduction in random information systems via Dempster–Shafer theory of evidence. Inform. Sci. 174, 143–164 (2005)

    Article  MathSciNet  Google Scholar 

  29. Wu, W.Z.: Knowledge reduction in random incomplete decision tables via evidence theory. Fundam. Inform. 115, 203–218 (2012)

    Article  MathSciNet  Google Scholar 

  30. Yao, Y.Q., Mi, J.S., Li, Z.J.: Attribute reduction based on generalized fuzzy evidence theory in fuzzy decision systems. Fuzzy Sets Syst. 170, 64–75 (2011)

    Article  MathSciNet  Google Scholar 

  31. Feng, T., Mi, J.S., Zhang, S.P.: Belief functions on general intuitionistic fuzzy information systems. Inform. Sci. 171, 143–158 (2014)

    Article  MathSciNet  Google Scholar 

  32. Yager, R.R.: A class of fuzzy measures generated from a Dempster–Shafer belief structure. Int. J. Intell. Syst. 14(12), 1239–1247 (1999)

    Article  Google Scholar 

  33. Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. IEEE Int. Conf. Fuzzy Syst. 18, 1378–1382 (2009)

    Google Scholar 

  34. Yang, X.B., Song, X.N., Qi, Y.S.: Constructive and axiomatic approaches to hesitant fuzzy rough set. Soft Comput. 18, 1067–1077 (2014)

    Article  Google Scholar 

  35. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  Google Scholar 

  36. Wang, Z.Y., Klir, G.J.: Generalized Measure Theory. Springer, New Yourk (2008)

    Book  Google Scholar 

  37. Du, W.S., Hu, B.Q.: Attribute reduction in ordered decision tables via evidence theory. Inform. Sci. 91–110, 364–365 (2016)

    Google Scholar 

  38. Aminravan, F., Sadiq, R., Hoorfar, M., et al.: Multi-level information fusion for spatiotemporal monitoring in water distribution networks. Expert Syst. Appl. 42(7), 3813–3831 (2015)

    Article  Google Scholar 

  39. Song, Y., Wang, X., Lei, L., et al.: Combination of inter-valued belief structures based on intuitionistic fuzzy set. Knowl. Based Syst. 67(1), 61–70 (2014)

    Article  Google Scholar 

  40. Yao, Y.Y., Wong, S.K.M., Wang, L.S.: A non-numeric approach to Ubcertain reasoning. Int. J. General Syst. 23, 343–359 (1995)

    Article  Google Scholar 

  41. Ebrahimpour, M.K., Eftekhari, M.: Proposing a novel feature selection algorithm based on hesitant fuzzy sets and correlation concepts. In: IEEE The International Symposium on Artificial Intelligence and Signal Processing. 2015, pp. 41–46

  42. Ebrahimpour, M.K., Eftekhari, M.: Feature subset selection using information energy and correlation coefficients of hesitant fuzzy sets. In: IEEE Conference on Information and Knowledge Technology. 2015, pp. 1–6

  43. Tan, J., Chen, Z., Zhu, X. et al.: Attribute reduction of hesitant fuzzy ordered decision table based on dominance relation. In: IEEE Information Technology and Mechatronics Engineering Conference. 2018, pp. 1557–1561

  44. Gegeny, D., Kovacs, S.: Fuzzy interpolation of fuzzy rough sets. In: IEEE International Conference on Fuzzy Systems. 2022, pp. 1–5

  45. Abbasi, K., Ameri, R., Talebi-Rostami, Y.: Multiplicative fuzzy sets. In: IEEE Iranian Joint Congress on Fuzzy and Intelligent Systems. 2018, pp. 156–157

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 62376229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Xu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Xu, W. Attribute Reduction Approach Using Evidence Theory for Hesitant Fuzzy Data Sets. Int. J. Fuzzy Syst. 26, 1998–2010 (2024). https://doi.org/10.1007/s40815-023-01674-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01674-z

Keywords

Navigation