Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Adaptive Tracking Control for the Conversion Mode of Tilt-Rotor Aircraft with Switched Fuzzy Modeling

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The conversion mode control scheme for tilt-rotor aircraft is provided with a switched Takagi-Sugeno (T-S) fuzzy modeling method and an adaptive anti-disturbance reference model tracking technique. In order to describe the dynamic features of the tilting process, a switched T-S fuzzy model is constructed with respect to the inclination angle. Compared to the linearized model, the initial nonlinear characteristics of the mathematical description are retained by the fuzzy modeling process, including the nonlinear disturbance input. Hence, an adaptive controller is designed to eliminate the adverse impact of composite disturbances caused by the rotor effect and the natural wind, which guarantees an \({\mathcal {L}}_{2}\)-\({\mathcal {L}}_{\infty }\) performance of the corresponding error system. Furthermore, a simulation result with respect to the XV-15 tilt-rotor aircraft is given to verify the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sheng, H., Zhang, C., Xiang, Y.: Mathematical modeling and stability analysis of tiltrotor aircraft. Drones 6(4), 92 (2022)

    Article  Google Scholar 

  2. Wang, Z., Huang, J., Yi, M., Lu, S.: A dynamic RCS and noise prediction and reduction method of coaxial tilt-rotor aircraft based on phase modulation. Sensors 22(24), 9711 (2022)

    Article  Google Scholar 

  3. Cardoso, D.N., Esteban, S., Raffo, G.V.: A new robust adaptive mixing control for trajectory tracking with improved forward flight of a tilt-rotor UAV. ISA Trans. 110, 86–104 (2021)

    Article  Google Scholar 

  4. Bauersfeld, L., Spannagl, L., Ducard, G.J., Onder, C.H.: MPC flight control for a tilt-rotor VTOL aircraft. IEEE Trans. Aerosp. Electron. Syst. 57(4), 2395–2409 (2021)

    Article  Google Scholar 

  5. Lv, Z., Wu, Y., Zhao, Q., Sun, X.: Design and control of a novel coaxial tilt-rotor UAV. IEEE Trans. Ind. Electron. 69(4), 3810–3821 (2021)

    Article  Google Scholar 

  6. Wu, W., Chen, R.: An improved online system identification method for tiltrotor aircraft. Aerosp. Sci. Technol. 110, 106491 (2021)

    Article  Google Scholar 

  7. Padfield, G., Lu, L.: The potential impact of adverse aircraft pilot couplings on the safety of tilt rotor operations. Aeronaut. J. 126(1304), 1617–1647 (2022)

    Article  Google Scholar 

  8. Wang, Z., Wang, Q., Yu, H., Duan, D., Ding, Z., Li, J.: Trimming analysis method of quad tilt rotor based on aerodynamic interference model. J. Aircr. 58(2), 253–265 (2021)

    Article  Google Scholar 

  9. Qu, S., Zhu, G., Su, W., Swei, S.S.-M.: LPV model based adaptive MPC of an eVTOL aircraft during tilt transition subject to motor failure. Int. J. Control Autom. Syst. 21(2), 339–349 (2023)

    Article  Google Scholar 

  10. Zheng, Q., Xu, S., Du, B.: Quantized guaranteed cost output feedback control for nonlinear networked control systems and its applications. IEEE Trans. Fuzzy Syst. 30(7), 2402–2411 (2021)

    Article  Google Scholar 

  11. Öner, K.T., Çetinsoy, E., Sirimoğlu, E., Hançer, C., Ünel, M., Akşit, M.F., Gülez, K., Kandemir, I.: Mathematical modeling and vertical flight control of a tilt-wing UAV. Turk. J. Electr. Eng. Comput. Sci. 20(1), 149–157 (2012)

    Google Scholar 

  12. Hernandez-Garcia, R.G., Rodriguez-Cortes, H.: Transition flight control of a cyclic tiltrotor UAV based on the gain-scheduling strategy. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 951–956 (2015)

  13. Righetti, A., Muscarello, V., Quaranta, G., et al.: Linear parameter varying models for the optimization of tiltrotor conversion maneuver. In: Annual Forum Proceedings, pp. 280–287 (2017)

  14. Li, Y., Tong, S.: Command filtered based fuzzy adaptive control design for MIMO switched nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 25(3), 668–681 (2016)

    Article  Google Scholar 

  15. Chen, C., Zhang, J., Wang, N., Shen, L., Li, Y.: Conversion control of a tilt tri-rotor unmanned aerial vehicle with modeling uncertainty. Int. J. Adv. Robot. Syst. 18(4), 17298814211027032 (2021)

    Article  Google Scholar 

  16. Li, H., Zheng, X., He, H., Liao, L.: Design and longitudinal dynamics decoupling control of a tilt-rotor aerial vehicle with high maneuverability and efficiency. IEEE Robot. Autom. Lett. 8(3), 1191–1198 (2022)

    Article  Google Scholar 

  17. Yu, X., Chen, R., Wang, L., Yan, X., Yuan, Y.: An optimization for alleviating pilot workload during tilt rotor aircraft conversion and reconversion maneuvers. Aerosp. Sci. Technol. 129, 107854 (2022)

    Article  Google Scholar 

  18. Krokavec, D., Filasová, A.: State estimation of positive switched interval systems with Metzler-Takagi-Sugeno fuzzy models. Machines 11(2), 290 (2023)

    Article  Google Scholar 

  19. Narayanan, G., Ali, M.S., Zhu, Q., Priya, B., Thakur, G.K.: Fuzzy observer based consensus tracking control for fractional order multi-agent systems under cyber attacks and its application to electronic circuits. IEEE Trans. Netw. Sci. Eng. 10(2), 698–708 (2023)

    Article  MathSciNet  Google Scholar 

  20. Lyu, B., Liu, C., Yue, X.: Hybrid nonfragile intermediate observer based T-S fuzzy attitude control for flexible spacecraft with input saturation. Aerosp. Sci. Technol. 128, 107753 (2022)

    Article  Google Scholar 

  21. Shao, S., Xia, R., Li, W., Wu, Q., Feng, K., Chen, H.: Dissipativity based anti-disturbance event triggered tracking control of time delay switched linear systems and its application to the conversion mode of XV-15 tilt-rotor aircraft. Discret. Contin. Dyn. Syst.-S (2023). https://doi.org/10.3934/dcdss.2023090

    Article  Google Scholar 

  22. Rahman, M.Z.U., Leiva, V., Martin-Barreiro, C., Mahmood, I., Usman, M., Rizwan, M.: Fractional transformation based intelligent \(\cal{H} _{\infty }\) controller of a direct current servo motor. Fractal Fract. 7(1), 29 (2023)

    Article  Google Scholar 

  23. Yang, D., Zong, G., Su, S.-F.: \(\cal{H} _{\infty }\) tracking control of uncertain markovian hybrid switching systems: a fuzzy switching dynamic adaptive control approach. IEEE Trans. Cybern. 52(5), 3111–3122 (2020)

    Article  Google Scholar 

  24. Chen, Y., Liu, L., Qian, W., Liu, Y., Alsaadi, F.E.: \(\cal{L} _{2}\)-\(\cal{L} _{\infty }\) state estimation for discrete time switched neural networks with time varying delay. Neurocomputing 282, 25–31 (2018)

    Article  Google Scholar 

  25. Jiang, X., Tian, S., Zhang, W.: Weighted \(\cal{H} _{\infty }\) performance analysis of nonlinear stochastic switched systems: a mode-dependent average dwell time method. Int. J. Fuzzy Syst. 22(5), 1454–1467 (2020)

    Article  Google Scholar 

  26. Zhang, H., Shi, Y., Mehr, A.S.: Robust energy-to-peak filtering for networked systems with time varying delays and randomly missing data. IET Control Theory Appl. 4(12), 2921–2936 (2010)

    Article  MathSciNet  Google Scholar 

  27. Zheng, Q., Guo, X., Zhang, H.: Mixed \(\cal{H} _{\infty }\) and passive filtering for a class of nonlinear switched systems with unstable subsystems. Int. J. Fuzzy Syst. 20(3), 769–781 (2018)

    Article  MathSciNet  Google Scholar 

  28. Xing, L., Zhang, J., Liu, C., Zhang, X.: Fuzzy logic based adaptive event triggered sliding mode control for spacecraft attitude tracking. Aerosp. Sci. Technol. 108, 106394 (2021)

    Article  Google Scholar 

  29. Wang, Y., Jiang, B., Wu, Z., Xie, S., Peng, Y.: Adaptive sliding mode fault tolerant fuzzy tracking control with application to unmanned marine vehicles. IEEE Trans. Syst. Man Cybern. 51(11), 6691–6700 (2020)

    Article  Google Scholar 

  30. Snyder, S., Zhao, P., Hovakimyan, N.: Adaptive control for linear parameter varying systems with application to a VTOL aircraft. Aerosp. Sci. Technol. 112, 106621 (2021)

    Article  Google Scholar 

  31. Xu, Y., Hu, Q., Shao, X.: Composite adaptive attitude control for combined spacecraft with inertia uncertainties. Aerosp. Sci. Technol. 131, 107984 (2022)

    Article  Google Scholar 

  32. Hespanha, J.P., Morse, A.S.: Stability of switched systems with average dwell time. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3, pp. 2655–2660 (1999)

  33. Xie, J., Yang, D., Zhao, J.: Composite anti-disturbance model reference adaptive control for switched systems. Inf. Sci. 485, 71–86 (2019)

    Article  MathSciNet  Google Scholar 

  34. Sang, Q., Tao, G.: Adaptive control of piecewise linear systems: the state tracking case. IEEE Trans. Autom. Control 57(2), 522–528 (2011)

    Article  MathSciNet  Google Scholar 

  35. Wu, C., Zhao, J.: \(\cal{H} _{\infty }\) adaptive tracking control for switched systems based on an average dwell time method. Int. J. Syst. Sci. 46(14), 2547–2559 (2015)

    Article  MathSciNet  Google Scholar 

  36. Ferguson, S.W.: A mathematical model for real time flight simulation of a generic tilt-rotor aircraft. NASA CR-166536 (1988)

  37. Li, W., Shi, S., Chen, M., Shao, S., Wu, Q.: Switching modeling and bumpless transfer tracking control for the conversion mode of tilt-rotor aircraft. Trans. Inst. Meas. Control. 45(11), 2103–2114 (2023)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Hong Kong, Macao and Taiwan Science and Technology Cooperation Project of Special Foundation in Jiangsu Science and Technology Plan under Grant BZ2023057, National Natural Science Foundation of China (62103186), Natural Science Foundation of Jiangsu Province of China (BK20210285), and China Postdoctoral Science Foundation (2021TQ0151, 2021M691571).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mou Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Shi, S., Chen, M. et al. Adaptive Tracking Control for the Conversion Mode of Tilt-Rotor Aircraft with Switched Fuzzy Modeling. Int. J. Fuzzy Syst. 26, 1203–1214 (2024). https://doi.org/10.1007/s40815-023-01661-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01661-4

Keywords

Navigation