Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Robust Non-fragile \(H_{\infty }\) Fuzzy Control for Uncertain Nonlinear-Delayed Hyperbolic PDE Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider the robust non-fragile \(H_{\infty }\) fuzzy control for uncertain nonlinear delayed hyperbolic partial differential equation (PDE) systems, which can represent the dynamics of most industrial processes, such as plug-flow reactors, fixed-bed reactors, tubular heat exchangers, traffic flows, and wave equations. Initially, a Takagi–Sugeno (T–S) fuzzy-delayed hyperbolic PDE model is presented to describe the uncertain nonlinear delayed hyperbolic PDE system. Subsequently, based on the T–S fuzzy delayed hyperbolic PDE model, spatial linear matrix inequality (SLMI) based sufficient conditions to ensure exponential stability with an \(H_{\infty }\) performance are obtained via utilizing the Lyapunov direct method. Then, to solve the SLMIs, the robust non-fragile \(H_{\infty }\) fuzzy control problem for uncertain nonlinear delayed hyperbolic PDE systems is formulated as an LMI feasibility problem. Finally, two examples on a Lotka–Volterra PDE system and a non-isothermal plug-flow reactor (PFR) are presented to illustrate the effectiveness of the presented control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liang, M., Chang, Y., Zhang, F., Wang, S., Wang, C., Lu, S., Wang, Y.: Observer-based adaptive fuzzy output feedback control for a class of fractional-order nonlinear systems with full-state constraints. Int. J. Fuzzy Syst. 24, 1046–1058 (2022)

    Article  Google Scholar 

  2. Song, X., Sun, P., Song, S., Wu, Q., Lu, J.: Event-triggered fuzzy adaptive fixed-time output-feedback control for nonlinear systems with multiple objective constraints. Int. J. Fuzzy Syst. (2022). https://doi.org/10.1007/s40815-022-01304-0

    Article  Google Scholar 

  3. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  4. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  5. Feng, G.: Analysis and Synthesis of Fuzzy Control Systems: A Model Based Approach. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  6. Ray, W.-H.: Advanced Process Control. McGraw-Hill, New York (1981)

    Google Scholar 

  7. Curtain, R.F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  8. Padhi, R., Ali, S.F.: An account of chronological developments in control of distributed parameter systems. Annu. Rev. Control. 33(1), 59–68 (2009)

    Article  Google Scholar 

  9. Wang, J.-W., Wu, H.-N., Li, H.-X.: Distributed fuzzy control design of nonlinear hyperbolic PDE systems with application to nonisothermal plug-flow reactor. IEEE Trans. Fuzzy Syst. 19(3), 514–526 (2011)

    Article  Google Scholar 

  10. Wang, J.-W., Wu, H.-N.: Fuzzy output tracking control of semi-linear first-order hyperbolic PDE systems with matched perturbations. Fuzzy Sets Syst. 254, 47–66 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qiu, J., Ding, S.-X., Gao, H., Yin, S.: Fuzzy-model-based reliable static output feedback \(H_{\infty }\) control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst. 24(2), 388–400 (2016)

    Article  Google Scholar 

  12. Fridman, E., Orlov, Y.: An LMI approach to \(H_{\infty }\) boundary control of semilinear parabolic and hyperbolic systems. Automatica 45(9), 2060–2066 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, H.-N., Wang, J.-W., Li, H.-X.: Design of distributed \(H_{\infty }\) fuzzy controllers with constraint for nonlinear hyperbolic PDE systems. Automatica 48(10), 2535–2543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tsai, S.-H., Wang, J.-W., Song, E.-S., Lam, H.-K.: Robust \(H_{\infty }\) control for nonlinear hyperbolic PDE systems based on the polynomial fuzzy model. IEEE Trans. Cybern. 51(7), 3789–3801 (2021)

    Article  Google Scholar 

  15. He, Y., Wang, Q.-G., Xie, L.H., Lin, C.: Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Trans. Autom. Control 52(2), 293–299 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: application to time-delay systems. Automatica 49(9), 2860–2866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fridman, E., Orlov, Y.: Exponential stability of linear distributed parameter systems with time-varying delays. Automatica 45(1), 194–201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, J.-W., Sun, C.-Y.: Delay-dependent exponential stabilization for linear distributed parameter systems with time-varying delay. J. Dyn. Syst. Meas. Control 140(5), 051003 (2018)

    Article  Google Scholar 

  19. Wu, H.-N., Zhang, X.-W.: Static output feedback stabilization for a linear parabolic PDE system with time-varying delay via mobile collocated actuator/sensor pairs. Automatica 117, 108993 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yuan, K., Li, H.-X., Cao, J.: Robust stabilization of the distributed parameter system with time delay via fuzzy control. IEEE Trans. Fuzzy Syst. 16(3), 567–584 (2008)

    Article  Google Scholar 

  21. Chang, Y.-T., Chen, B.-S.: A fuzzy approach for robust referencetracking-control design of nonlinear distributed parameter time-delayed systems and its application. IEEE Trans. Fuzzy Syst. 18(6), 1041–1057 (2010)

    Article  Google Scholar 

  22. Wang, Z.-P., Wu, H.-N., Huang, T.: Sampled-data fuzzy control for nonlinear delayed distributed parameter systems. IEEE Trans. Fuzzy Syst. 29(10), 3054–3066 (2021)

    Article  Google Scholar 

  23. Zhang, X.-W., Wu, H.-N.: Fuzzy control design of nonlinear time-delay parabolic PDE systems under mobile collocated actuators and sensors. IEEE Trans. Cybern. 52(5), 3947–3956 (2022)

    Article  Google Scholar 

  24. Wang, Z.-P., Wu, H.-N., Huang, T.: Spatially local piecewise fuzzy control for nonlinear delayed DPSs with random packet losses. IEEE Trans. Fuzzy Syst. 30(5), 1447–1459 (2022)

    Article  Google Scholar 

  25. Wang, Z.-P., Zhang, X., Wu, H.-N., Huang, T.: Fuzzy boundary control for nonlinear delayed DPSs under boundary measurements. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3105249

    Article  Google Scholar 

  26. Chen, W.-H., Wang, Z., Wei, D., Lu, X.: Robust sampled-data \(H_{\infty }\) control of uncertain singularly perturbed systems using time-dependent lyapunov functionals. Int. J. Syst. Sci. 46(15), 2832–2852 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, J.-W., Wu, H.-N., Li, H.-X.: Distributed proportional-spatial derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach. IEEE Trans. Cybern. 42(3), 927–938 (2012)

    Article  Google Scholar 

  28. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. MathWorks, Inc., Natick (1995)

    Google Scholar 

  29. Levine, I.N.: Quantum Chemistry. Prentice Hall International, Inc., New York (2009)

    Google Scholar 

  30. Wang, J.-W., Wu, H.-N.: Design of suboptimal local piecewise fuzzy controller with multiple constraints for quasi-linear spatiotemporal dynamic systems. IEEE Trans. Cybern. 51(5), 2433–2445 (2021)

    Article  Google Scholar 

  31. Aksikas, I., Winkin, J.J., Dochain, D.: Optimal LQ-feedback regulation of a nonisothermal plug flow reactor model by spectral factorization. IEEE Trans. Autom. Control 52(7), 1179–1193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grants 2021ZD0112301 and 2021ZD0112302, in part by the National Natural Science Foundations of China under Grants 62073011, 62203326, and 61973135 and in part by the Shandong Provincial Natural Science Foundation under Grant ZR2021MF 004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Peng Wang.

Appendices

Appendix 1

Differentiating V(t) along the solution of the system (9) yields

$$\begin{aligned}&{\dot{V}}(t)+2\delta V(t)\nonumber \\&\quad \le \int _{l_1}^{l_2} [z^{T}(x,t)P(x){\varTheta }(x) z_x(x,t)\nonumber \\&\qquad +z_x^{T}(x,t){\varTheta }^{T}(x)P(x) z(x,t) ]dx\nonumber \\&\qquad +2\int _{l_1}^{l_2}\sum \limits _{i=1}^r\sum \limits _{j=1}^rh_i(\varpi (x,t))h_j(\varpi (x,t))z^{T}(x,t)P(x)\nonumber \\&\qquad \times \{A_i(x)z(x,t)+A_{\tau i}(x)z(x,t-\tau (t))\nonumber \\&\qquad +G_i(x)K_j(x)z(x,t)\}dx\nonumber \\&\qquad +2\delta \int _{l_1}^{l_2} z^{T}(x,t)P(x) z(x,t)dx\nonumber \\&\qquad +\int _{l_1}^{l_2}z^{T}(x,t)Q_1(x)z(x,t)dx\nonumber \\&\qquad -(1-\nu )e^{-2\delta {{\bar{\tau }}}}\int _{l_1}^{l_2}z^{T}(x,t-\tau (t))\nonumber \\&\qquad \times Q_1(x)z(x,t-\tau (t))dx\nonumber \\&\qquad +\int _{l_1}^{l_2}z^{T}(x,t)Q_2(x)z(x,t)d\nonumber \\&\qquad -e^{-2\delta {{\bar{\tau }}}}\int _{l_1}^{l_2}z^{T}(x,t-{\bar{\tau }})Q_2(x)z(x,t-{\bar{\tau }})dx. \end{aligned}$$
(35)

Integrating by parts in (35), we obtain

$$\begin{aligned}&\int _{l_1}^{l_2} z^{T}(x,t)P(x){\varTheta }(x) z_x(x,t)dx\nonumber \\&\quad =z^{T}(x,t)P(x){\varTheta }(x) z(x,t)|_{x=l_1}^{x=l_2}\nonumber \\&\qquad -\int _{l_1}^{l_2}(z^{T}(x,t)P(x){\varTheta }(x))_x z(x,t)dx\nonumber \\&\quad =\int _{l_1}^{l_2}(\vartheta (x-l_2)-\vartheta (x-l_1))z^{T}(x,t)P(x){\varTheta }(x) z(x,t)dx\nonumber \\&\qquad -\int _{l_1}^{l_2} z_x^{T}(x,t)P(x){\varTheta }(x) z(x,t)dx\nonumber \\&\qquad -\int _{l_1}^{l_2} z^{T}(x,t)(P(x) {\varTheta }(x))_x z(x,t)dx \end{aligned}$$
(36)

where \(\vartheta (x)\) is the Dirac delta function defined as follows:

$$\begin{aligned} \vartheta (x)=\left\{ \begin{aligned}&\infty ,&x=0\\&0,&x\ne 0 \end{aligned} \right. \end{aligned}$$

and has the following property:

$$\begin{aligned} \int _{-\infty }^{+\infty }f(x)\vartheta (x-x_0)ds=f(x_0). \end{aligned}$$

From (36), one has the following equality considering \(P(x){\varTheta }(x)={\varTheta }^T(x)P(x)\):

$$\begin{aligned}&\int _{l_1}^{l_2} [z^{T}(x,t)P(x){\varTheta }(x) z_x(x,t)\nonumber \\&\qquad +z_x^{T}(x,t){\varTheta }^{T}(x)P(x) z(x,t) ]dx\nonumber \\&\quad =x\int _{l_1}^{l_2}(\vartheta (x-l_2)-\vartheta (x-l_1))z^{T}(x,t)P(x){\varTheta }(x) z(x,t)dx\nonumber \\&\qquad -\int _{l_1}^{l_2} z^{T}(x,t)(P(x) {\varTheta }(x))_x z(x,t)dx. \end{aligned}$$
(37)

Based on (35)–(37), we have

$$\begin{aligned}&{\dot{V}}(t)+2\delta V(t)\nonumber \\&\quad \le \int _{l_1}^{l_2}\sum \limits _{i=1}^r\sum \limits _{j=1}^rh_i(\varpi (x,t))h_j(\varpi (x,t))\nonumber \\&\qquad \times \xi (x,t){\varPsi }_{ij}(x)\xi (x,t)dx \end{aligned}$$
(38)

with \(\xi (x,t)=[ \ z^T(x,t) \ z^T(x,t-\tau (t)) \ z^T(z,t-{\bar{\tau }}) \ ]^T\).

It is shown from (38) that if the following matrix inequalities hold:

$$\begin{aligned} {\varPsi }_{ij}(x)=\left[ \begin{array}{ccc}{\varPsi }_{11}(x)&{} {\varPsi }_{12}(x)&{} {\varPsi }_{13}(x)\\ *&{} {\varPsi }_{22}(x) &{} {\varPsi }_{23}(x)\\ * &{} * &{} {\varPsi }_{33}(x) \end{array} \right] <0 \end{aligned}$$

with

$$\begin{aligned} {\varPsi }_{11}(x)= & {} \psi (x)+P(x)A_i(x)+A_i^T(x)P(x)\\&+P(x)G_i(x)K_j(x)+K_j^T(x)G_i^T(x)P(x)\\ {\varPsi }_{12}(x)= & {} P(x)A_{\tau i}(x), \ {\varPsi }_{13}(x)=0\\ {\varPsi }_{22}(x)= & {} -(1-\nu )e^{-2\delta {\bar{\tau }}}Q_1(x), \ {\varPsi }_{23}(x)=0\\ {\varPsi }_{33}(x)= & {} -e^{-2\delta {\bar{\tau }}}Q_2(x)\\ \psi (x)= & {} \varphi (x)-P_x(x){\varTheta }(x)-P(x){\varTheta }_x(x)\\&+2\delta P(x)+Q_1(x)+Q_2(x)\\ \varphi (x)= & {} (\vartheta (x-l_2)-\vartheta (x-l_1))P(x){\varTheta }(x). \end{aligned}$$

Then the closed-loop fuzzy delayed hyperbolic PDE system (13) is exponentially stable with a decay rate \(\delta\).

Define \(Q(x)\triangleq P^{-1}(x)\), \({\tilde{K}}_j(x)\triangleq K_j(x) Q(x)\), \({\bar{Q}}_1(x)\) \(\triangleq Q(x)Q_1(x)Q(x)\), and \({\bar{Q}}_2(x)\triangleq Q(x)Q_2(x)Q(x)\). Pre- and postmultiplying both sides of \({\varPsi }_{ij}(x)\) by \(\text {diag}\{Q(x)\)\(Q(x), Q(x)\}\) and using the property \(Q_x(x)=-Q(x)\)\(Q^{-1}_x(x)Q(x)\). Subsequently, by Lemma 2, we can obtain Theorem 1. \(\square\)

Appendix 2

From (9), (10), and (35), we have

$$\begin{aligned}&\ \ \ {\dot{V}}(t)+2\delta V(t)+\Vert y_c(\cdot ,t)\Vert _2^2-\gamma ^2\Vert w(\cdot ,t)\Vert _2^2\nonumber \\&\quad \le \int _{l_1}^{l_2}(\vartheta (x-l_2)-\vartheta (x-l_1))z^{T}(x,t)P(x){\varTheta }(x) z(x,t)dx\nonumber \\&\qquad -\int _{l_1}^{l_2} z^{T}(x,t)\{P_x(x){\varTheta }(x)+P(x){\varTheta }_x(x)\}z(x,t)dx\nonumber \\&\qquad +2\int _{l_1}^{l_2}\sum \limits _{i=1}^r\sum \limits _{j=1}^rh_i(\varpi (x,t))h_j(\varpi (x,t))z^{T}(x,t)\nonumber \\&\qquad \times \{P(x){\bar{A}}_i(x,t)z(x,t)+P(x){\bar{A}}_{\tau i}(x,t)z(x,t-\tau (t))\nonumber \\&\qquad +P(x){\bar{G}}_i(x,t){\bar{K}}_j(x,t)z(x,t)+P(x){\bar{G}}_{wi}(x,t)w(x,t)\}\nonumber \\&\qquad +\int _{l_1}^{l_2}\sum \limits _{j=1}^rh_j(\varpi (x,t))z^T(x,t)(C+D{\bar{K}}_j(x,t))^T \nonumber \\&\qquad \times (C+D{\bar{K}}_j(x,t))z(x,t)dx\nonumber \\&\qquad -\gamma ^2\int _{l_1}^{l_2}w^T(x,t)w(x,t)dx\nonumber \\&\qquad +2\delta \int _{l_1}^{l_2} z^{T}(x,t)P(x) z(x,t)dx\nonumber \\&\qquad +\int _{l_1}^{l_2}z^{T}(x,t)Q_1(x)z(x,t)dx\nonumber \\&\qquad -(1-\nu )e^{-2\delta {{\bar{\tau }}}}\int _{l_1}^{l_2}z^{T}(x,t-\tau (t))Q_1(x)z(x,t-\tau (t))dx\nonumber \\&\qquad +\int _{l_1}^{l_2}z^{T}(x,t)Q_2(x)z(x,t)dx\nonumber \\&\qquad -e^{-2\delta {{\bar{\tau }}}}\int _{l_1}^{l_2}z^{T}(x,t-{\bar{\tau }})Q_2(x)z(x,t-{\bar{\tau }})dx. \end{aligned}$$
(39)

Defining \({\bar{\xi }}(x,t)=[ \ z^T(x,t) \ z^T(x,t-\tau (t)) \ z^T(z,t-{\bar{\tau }}) \ w^T(x,t) \ ]^T\), one has

$$\begin{aligned}&{\dot{V}}(t)+2\delta V(t)+\Vert y_c(\cdot ,t)\Vert _2^2-\gamma ^2\Vert w(\cdot ,t)\Vert _2^2\nonumber \\&\quad \le \int _{l_1}^{l_2}\sum \limits _{i=1}^r\sum \limits _{j=1}^rh_i(\varpi (x,t))h_j(\varpi (x,t)\nonumber \\&\qquad \times {\bar{\xi }}^T(x,t){\varPhi }_{ij}(x){\bar{\xi }}(x,t)dx \end{aligned}$$
(40)

where

$$\begin{aligned} {\varPhi }_{ij}(x)=\left[ \begin{array}{cccc} {\varPhi }_{11}(x) &{} {\varPhi }_{12}(x) &{} {\varPhi }_{13} &{} {\varPhi }_{14}(x)\\ * &{} {\varPhi }_{22}(x) &{} {\varPhi }_{23} &{} {\varPhi }_{24}\\ * &{} * &{} {\varPhi }_{33}(x) &{} {\varPhi }_{34}\\ * &{} * &{} * &{} {\varPhi }_{44} \end{array}\right] \end{aligned}$$

with

$$\begin{aligned} {\varPhi }_{11}(x)= &\,\, {} \psi (x)+P(x){\bar{G}}_i(x,t){\bar{K}}_j(x,t)+P(x){\bar{A}}_i(x,t)\\&\,\,+{\bar{A}}^T_i(x,t)P(x)+{\bar{K}}^T_j(x,t){\bar{G}}^T_i(x,t)P(x)\\&\,\,+(C+D{\bar{K}}_j(x,t))^T(C+D{\bar{K}}_j(x,t))\\ {\varPhi }_{12}(x)= &\,\, {} P(x){\bar{A}}_{\tau i}(x,t), {\varPhi }_{13}=0 \\ {\varPhi }_{14}(x)= &\,\, {} P(x){\bar{G}}_{wi}(x,t), {\varPhi }_{22}(x)=-(1-\nu )e^{-2\delta {\bar{\tau }}}Q_1(x)\\ {\varPhi }_{23}= &\,\, {} 0, {\varPhi }_{24}=0, {\varPhi }_{33}(x)=-e^{-2\delta {\bar{\tau }}} Q_2(x)\\ {\varPhi }_{34}= &\,\, {} 0, {\varPhi }_{44}=-\gamma ^2 I\\ \psi (x)= &\,\, {} \varphi (x)-P_x(x){\varTheta }(x)-P(x){\varTheta }_x(x)+2\delta P(x)\\&+Q_1(x)+Q_2(x)\\ \varphi (x)= & {} (\vartheta (x-l_2)-\vartheta (x-l_1))P(x){\varTheta }(x). \end{aligned}$$

Using Lemma 1, one has

$$\begin{aligned}&P(x)G_i(x){\varDelta } K_j(x,t)+{\varDelta } K^T_j(x,t)G^T_i(x)P(x)\nonumber \\&\quad \le \varsigma _{ij}P(x)G_i(x)M_{j}(x)[P(x)G_i(x)M_{j}(x)]^T\nonumber \\&\qquad +\varsigma _{ij}^{-1}N^T_{j}(x)N_{j}(x),\nonumber \\&P(x){\varDelta } A_i(x,t)+{\varDelta } A^T_i(x,t)P(x)\nonumber \\&\quad \le \sigma _{ij}P(x)H_i(x)(P(x)H_i(x))^T+\sigma _{ij}^{-1}E_{1i}^T(x)E_{1i}(x),\nonumber \\&P(x){\varDelta } A_{\tau i}(x,t)+{\varDelta } A^T_{\tau i}(x,t)P(x)\nonumber \\&\quad \le \varrho _{ij}P(x)H_i(x)(P(x)H_i(x))^T+\varrho _{ij}^{-1}E_{2i}^T(x)E_{2i}(x),\nonumber \\&P(x){\varDelta } G_i(x,t){\bar{K}}_j(x,t)+{\bar{K}}^T_j(x,t){\varDelta } G^T_i(x,t)P(x)\nonumber \\&\quad \le \rho _{ij}P(x)H_i(x)(P(x)H_i(x))^T\nonumber \\&\qquad +\rho _{ij}^{-1}(E_{3i}(x){\bar{K}}_j(x,t))^T E_{3i}(x){\bar{K}}_j(x,t),\nonumber \\&P(x){\varDelta } G_{wi}(x,t)+{\varDelta } G^T_{wi}(x,t)P(x)\nonumber \\&\quad \le \theta _{ij}P(x)H_i(x)(P(x)H_i(x))^T+\theta _{ij}^{-1}E_{4i}^T(x)E_{4i}(x). \end{aligned}$$
(41)

With the help of Lemma 1, the terms \(D{\varDelta } K_j(x,t)\) and \(E_{3i}{\varDelta } K_j(x,t)\) in (41) can be solved by parameters \(\iota _{ij}\) and \(\kappa _{ij}\), respectively. Then, from (39)–(41) and using Schur complement, the matrices \({\varPhi }_{ij}(x)\) in (40) can be transformed as follows:

$$\begin{aligned} {\varLambda }_{ij}(x)=\left[ \begin{array}{ccc} {\varLambda }_{1,1}(x) &{} \cdots &{} {\varLambda }_{1,19}\\ \vdots &{} \ddots &{} \vdots \\ * &{} \cdots &{} {\varLambda }_{19,19} \end{array}\right] \end{aligned}$$

with

$$\begin{aligned} {\varLambda }_{1,1}(x)= & {} \psi (x)+P(x)A_i(x)+A^T_i(x)P(x)\\&+P(x)G_i(x)K_j(x)+K^T_j(x)G^T_i(x)P(x)\\ {\varLambda }_{1,2}(x)= & {} P(x)A_{\tau i}(x), \ {\varLambda }_{1,3}=0\\ {\varLambda }_{1,4}(x)= & {} P(x)G_{wi}(x), \ {\varLambda }_{1,5}(x)=(C+D K_j(x))^T\\ {\varLambda }_{1,6}(x)= & {} P(x)G_i(x)M_{j}(x), \ {\varLambda }_{1,7}(x)=N_{j}^T(x)\\ {\varLambda }_{1,8}(x)= & {} P(x)H_i(x), \ {\varLambda }_{1,9}(x)=E_{1i}^T(x)\\ {\varLambda }_{1,10}(x)= & {} P(x)H_i(x), \ {\varLambda }_{1,11}(x)=E_{2i}^T(x)\\ {\varLambda }_{1,12}(x)= & {} P(x)H_i(x), \ {\varLambda }_{1,13}(x)=K^T_j(x)E_{3i}^T(x)\\ {\varLambda }_{1,14}(x)= & {} P(x)H_i(x), \ {\varLambda }_{1,15}(x)=E_{4i}^T(x)\\ {\varLambda }_{1,16}(x)= & {} N_{j}^T(x), \ {\varLambda }_{1,17}(x)=N_{j}^T(x)\\ {\varLambda }_{1,18}= & {} 0, \ {\varLambda }_{1,19}=0\\ {\varLambda }_{2,2}(x)= & {} (\nu -1)e^{-2\delta {\bar{\tau }}}Q_1(x)\\ {\varLambda }_{3,3}(x)= & {} -e^{-2\delta {\bar{\tau }}} Q_2(x)\\ {\varLambda }_{4,4}= & {} -\gamma ^2 I, \ {\varLambda }_{5,5}=-I\\ {\varLambda }_{6,6}= & {} -\varsigma _{ij}^{-1}I, \ {\varLambda }_{7,7}=-\varsigma _{ij}I\\ {\varLambda }_{8,8}= & {} -\sigma _{ij}^{-1}I, \ {\varLambda }_{9,9}=-\sigma _{ij}I\\ {\varLambda }_{10,10}= & {} -\varrho _{ij}^{-1}I, \ {\varLambda }_{11,11}=-\varrho _{ij}I\\ {\varLambda }_{12,12}= & {} -\rho _{ij}^{-1}I, \ {\varLambda }_{13,13}=-\rho _{ij}I\\ {\varLambda }_{14,14}= & {} -\theta _{ij}^{-1}I, \ {\varLambda }_{15,15}=-\theta _{ij}I\\ {\varLambda }_{16,16}= & {} -\iota _{ij}I, \ {\varLambda }_{17,17}=-\kappa _{ij}I\\ {\varLambda }_{17,18}(x)= & {} \iota _{ij}E_{3i}(x)M_{j}(x), \ {\varLambda }_{18,18}=-\iota _{ij}I\\ {\varLambda }_{18,19}(x)= & {} \kappa _{ij}DM_{j}(x), \ {\varLambda }_{19,19}=-\kappa _{ij}I\\ \psi (x)= & {} \varphi (x)-P_x(x){\varTheta }(x)-P(x){\varTheta }_x(x)+2\delta P(x)\\&+Q_1(x)+Q_2(x)\\ \varphi (x)= & {} (\vartheta (x-l_2)-\vartheta (x-l_1))P(x){\varTheta }(x). \end{aligned}$$

It is obvious that the inequality is ensured as follows:

$$\begin{aligned} {\dot{V}}(t)+2\delta V(t)+\Vert y_c(\cdot ,t)\Vert _2^2-\gamma ^2\Vert w(\cdot ,t)\Vert _2^2<0 \end{aligned}$$
(42)

if

$$\begin{aligned} {\varLambda }_{ij}(x)<0. \end{aligned}$$
(43)

Pre- and post–multiplying both sides of \({\varLambda }_{ij}(x)\) by diag \(\{Q(x), Q(x), Q(x), I, I, \varsigma _{ij}I, I, \sigma _{ij}I, I, \varrho _{ij}I, I, \rho _{ij}I, I\), \(\theta _{ij}I, I, I, I, I, I\}\) and using the property \(Q_x(x)=-Q(x)\)\(Q^{-1}_x(x)\) Q(x). Then, by Lemma 2, we can obtain Theorem 2. \(\square\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, ZP., Wu, HN. et al. Robust Non-fragile \(H_{\infty }\) Fuzzy Control for Uncertain Nonlinear-Delayed Hyperbolic PDE Systems. Int. J. Fuzzy Syst. 25, 851–867 (2023). https://doi.org/10.1007/s40815-022-01409-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01409-6

Keywords

Navigation