Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A New Approach for Semi-supervised Fuzzy Clustering with Multiple Fuzzifiers

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Data clustering is the process of dividing data elements into different clusters in which elements in one cluster have more similarity than those in other clusters. Semi-supervised fuzzy clustering methods are used in various applications. The available methods are based on fuzzy C-Mean, kernel function, weight function and adaptive function. The fuzzification coefficient is an important factor that affects to the performance in these methods. In this paper, we propose the improvements of semi-supervised standard fuzzy C-Mean clustering (SSFCM) by using multiple fuzzifiers to increase clusters quality. Two proposed models, named as MCSSFC-P and MCSSFC-C, use different fuzzifiers for each data point and for each cluster, respectively, which are established in a form of optimal problems. The values of fuzzifiers are updated to get the best values of objective functions. Evaluations on different datasets are performed. The numerical results show the higher performance of our model than some related models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abdar, M., et al.: BARF: a new direct and cross-based binary residual feature fusion with uncertainty-aware module for medical image classification. Inf. Sci. 577, 353–378 (2021)

    Article  MathSciNet  Google Scholar 

  2. Arshad, A., et al.: Semi-supervised deep fuzzy c-mean clustering for software fault prediction. IEEE Access 6, 25675–25685 (2018)

    Article  Google Scholar 

  3. Arshad, A., Riaz, S., Jiao, L.: Semi-supervised deep fuzzy C-mean clustering for imbalanced multi-class classification. IEEE Access 7, 28100–28112 (2019)

    Article  Google Scholar 

  4. Banerjee, A., Maji, P.: Segmentation of bias field induced brain MR images using rough sets and stomped-t distribution. Inf. Sci. 504, 520–545 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  6. Cai, W. et al.: An adaptive approach of feature selection applied to semi-supervised fuzzy clustering. In: Proceedings of the 2020 4th International Conference on Electronic Information Technology and Computer Engineering (2020)

  7. Cao, L., Wang, C., Li, J.: Vehicle detection from highway satellite images via transfer learning. Inf. Sci. 366, 177–187 (2016)

    Article  MathSciNet  Google Scholar 

  8. Casalino, G., Castellano, G., Mencar, C.: Incremental adaptive semi-supervised fuzzy clustering for data stream classification. In: 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). IEEE (2018)

  9. Casalino, G., Castellano, G., Mencar, C.: Data stream classification by dynamic incremental semi-supervised fuzzy clustering. Int. J. Artif. Intell. Tools 28(08), 1960009 (2019)

    Article  Google Scholar 

  10. Casalino, G. et al.: Incremental semi-supervised fuzzy C-Means for bipolar disorder episode prediction. In: 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). IEEE (2020)

  11. Curiskis, S.A., et al.: An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit. Inf. Process. Manag. 57(2), 102034 (2020)

    Article  Google Scholar 

  12. Ding, W., Abdel-Basset, M., Hawash, H.: RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions. Inf. Sci. 578, 559–573 (2021)

    Article  MathSciNet  Google Scholar 

  13. Frigui, H., Bchir, O., Baili, N.: An overview of unsupervised and semi-supervised fuzzy kernel clustering. Int. J. Fuzzy Logic Intell. Syst. 13(4), 254–268 (2013)

    Article  Google Scholar 

  14. Gan, H., et al.: Local homogeneous consistent safe semi-supervised clustering. Expert Syst. Appl. 97, 384–393 (2018)

    Article  Google Scholar 

  15. Gan, H., et al.: Confidence-weighted safe semi-supervised clustering. Eng. Appl. Artif. Intell. 81, 107–116 (2019)

    Article  Google Scholar 

  16. Gan, H.: Safe semi-supervised fuzzy C-means clustering. IEEE Access 7, 95659–95664 (2019)

    Article  Google Scholar 

  17. Grira, N., Crucianu, M., Boujemaa, N.: Active semi-supervised fuzzy clustering. Pattern Recogn. 41(5), 1834–1844 (2008)

    Article  MATH  Google Scholar 

  18. Huang, H.-C., Chuang, Y.-Y., Chen, C.-S.: Multiple kernel fuzzy clustering. IEEE Trans. Fuzzy Syst. 20(1), 120–134 (2011)

    Article  Google Scholar 

  19. Juang, C.-F., Hsieh, C.-D.: Fuzzy C-means based support vector machine for channel equalisation. Int. J. Gen. Syst. 38(3), 273–289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kanzawa, Y.: Semi-supervised fuzzy c-means algorithms by revising dissimilarity/kernel matrices. In: Fuzzy Sets, Rough Sets, Multisets and Clustering, pp. 45–61. Springer, Cham (2017)

  21. Khang, T.D., et al.: Fuzzy c-means clustering algorithm with multiple fuzzification coefficients. Algorithms 13(7), 158 (2020)

    Article  MathSciNet  Google Scholar 

  22. Knorr, W., et al.: Combined use of weather forecasting and satellite remote sensing information for fire risk, fire and fire impact monitoring. Comput. Ecol. Softw. 1(2), 112 (2011)

    Google Scholar 

  23. Kumar, A., Bhadauria, H.S., Singh, A.: Semi-supervised OTSU based hyperbolic tangent Gaussian kernel fuzzy C-mean clustering for dental radiographs segmentation. Multimed. Tools Appl. 79(3), 2745–2768 (2020)

    Article  Google Scholar 

  24. Li, X., et al.: Semi-supervised clustering with deep metric learning and graph embedding. World Wide Web 23(2), 781–798 (2020)

    Article  Google Scholar 

  25. Li, Z., et al.: Crowdsourcing logistics pricing optimization model based on DBSCAN clustering algorithm. IEEE Access 8, 92615–92626 (2020)

    Google Scholar 

  26. Ma, M., et al.: Semi-supervised rough fuzzy Laplacian eigenmaps for dimensionality reduction. Int. J. Mach. Learn. Cybern. 10(2), 397–411 (2019)

    Article  Google Scholar 

  27. Mai, D.S., Ngo, L.T.: General semi-supervised possibilistic fuzzy c-means clustering for land-cover classification. In: 2019 11th International Conference on Knowledge and Systems Engineering (KSE). IEEE (2019)

  28. Mai, D.S., Ngo, L.T.: Semi-supervised fuzzy C-means clustering for change detection from multispectral satellite image. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE (2015)

  29. Mai, D.S., Ngo, L.T., Hagras, H.: A hybrid interval type-2 semi-supervised possibilistic fuzzy c-means clustering and particle swarm optimization for satellite image analysis. Inf. Sci. 548, 398–422 (2021)

    Article  MathSciNet  Google Scholar 

  30. Maraziotis, I.A.: A semi-supervised fuzzy clustering algorithm applied to gene expression data. Pattern Recogn. 45(1), 637–648 (2012)

    Article  MATH  Google Scholar 

  31. Narayana, G.S., Kolli, K.: Fuzzy K-means clustering with fast density peak clustering on multivariate kernel estimator with evolutionary multimodal optimization clusters on a large datase. Multimed. Tools Appl. 80(3), 4769–4787 (2021)

    Article  Google Scholar 

  32. Novák, V., et al.: Analysis of seasonal time series using fuzzy approach. Int. J. Gen. Syst. 39(3), 305–328 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Salehi, F., Keyvanpour, M.R., Sharifi, A.: SMKFC-ER: Semi-supervised multiple kernel fuzzy clustering based on entropy and relative entropy. Inf. Sci. 547, 667–688 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sato-Ilic, M.: Dynamic fuzzy clustering using fuzzy cluster loading. Int. J. Gen. Syst. 35(2), 209–230 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Śmieja, M., Struski, Ł, Figueiredo, M.A.T.: A classification-based approach to semi-supervised clustering with pairwise constraints. Neural Netw. 127, 193–203 (2020)

    Article  Google Scholar 

  36. Son, L.H., Thong, P.H.: Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences. Appl. Intell. 46(1), 1–15 (2017)

    Article  Google Scholar 

  37. Son, L.H., Thong, P.H.: An overview of semi-supervised fuzzy clustering algorithms. Int. J. Eng. Technol. 8(4), 301 (2016)

    Article  Google Scholar 

  38. Son, L.H., Tuan, T.M.: Dental segmentation from X-ray images using semi-supervised fuzzy clustering with spatial constraints. Eng. Appl. Artif. Intell. 59, 186–195 (2017)

    Article  Google Scholar 

  39. Son, L.H., Tuan, T.M.: A cooperative semi-supervised fuzzy clustering framework for dental X-ray image segmentation. Expert Syst. Appl. 46, 380–393 (2016)

    Article  Google Scholar 

  40. Tuan, T.M., Ngan, T.T., Son, L.H.: A novel semi-supervised fuzzy clustering method based on interactive fuzzy satisficing for dental X-ray image segmentation. Appl. Intell. 45(2), 402–428 (2016)

    Article  Google Scholar 

  41. Xiong, J., et al.: Semi-supervised fuzzy c-means clustering optimized by simulated annealing and genetic algorithm for fault diagnosis of bearings. IEEE Access 8, 181976–181987 (2020)

    Article  Google Scholar 

  42. Yasunori, E. et al.: On semi-supervised fuzzy c-means clustering. In: 2009 IEEE International Conference on Fuzzy Systems. IEEE (2009)

  43. Yu, Z., et al.: Adaptive ensembling of semi-supervised clustering solutions. IEEE Trans. Knowl. Data Eng. 29(8), 1577–1590 (2017)

    Article  Google Scholar 

  44. Zhou, F., et al.: MetaRisk: semi-supervised few-shot operational risk classification in banking industry. Inf. Sci. 552, 1–16 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number. 102.05-2020.11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Manh Tuan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, T.M., Sinh, M.D., Khang, T.Đ. et al. A New Approach for Semi-supervised Fuzzy Clustering with Multiple Fuzzifiers. Int. J. Fuzzy Syst. 24, 3688–3701 (2022). https://doi.org/10.1007/s40815-022-01363-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01363-3

Keywords

Navigation