Abstract
Nowadays, the high competitiveness of a company depends on its ability to deal quickly and cost-effectively with the market disruptions. For this reason, companies should have an agile and flexible supply chains to solve problems related to the market fluctuation. In fact, supply chain reconfigurability is the ability to modify their capacity and functionality at the lowest cost. The objective of this article is to assess reconfigurability based on its characteristics (modularity, scalability, integrability, convertibility, diagnosability and customization) using Fuzzy logic. For this purpose, a quantitative evaluation of reconfigurability is proposed. In order to validate our assessment model, a case study is applied to evaluate the degree of reconfigurability after supply chain reconfiguration.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Estampe, D.: Performance de la Supply Chain et modèles d’évaluation. ISTE Group (2015)
Gunasekaran, A., Patel, C., Tirtiroglu, E.: Performance measures and metrics in a supply chain environment. Int. J. Oper. Prod. Manag. 21, 71–87 (2001). https://doi.org/10.1108/01443570110358468
Gunasekaran, A., Patel, C., McGaughey, R.E.: A framework for supply chain performance measurement. Int. J. Prod. Econ. 87, 333–347 (2004). https://doi.org/10.1016/j.ijpe.2003.08.003
Beamon, B.M.: Measuring supply chain performance. Int. J. Oper. Prod. Manag. 19, 275–292 (1999). https://doi.org/10.1108/01443579910249714
Beamon, B.M.: Supply chain design and analysis: models and methods. Int. J. Prod. Econ. 55, 281–294 (1998). https://doi.org/10.1016/S0925-5273(98)00079-6
Chan, F.T.S.: Performance measurement in a supply chain. Int. J. Adv. Manuf. Technol. 21, 534–548 (2003). https://doi.org/10.1007/s001700300063
Chandra, C., Grabis, J.: Supply Chain Configuration: Concepts, Solutions, and Applications. Springer, New York (2016)
Dolgui, A., Ivanov, D., Sokolov, B.: Reconfigurable supply chain: the X-network. Int. J. Prod. Res. 58, 4138–4163 (2020). https://doi.org/10.1080/00207543.2020.1774679
Dolgui, A., Ivanov, D., Sokolov, B.: Ripple effect in the supply chain: an analysis and recent literature. Int. J. Prod. Res. 56, 414–430 (2018). https://doi.org/10.1080/00207543.2017.1387680
Ivanov, D.: Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic. Ann. Oper. Res. (2020). https://doi.org/10.1007/s10479-020-03640-6
Olivares-Aguila, J., ElMaraghy, W.: System dynamics modelling for supply chain disruptions. Int. J. Prod. Res. (2020). https://doi.org/10.1080/00207543.2020.1725171
Zidi, S., Hamani, N., Kermad, L.: Reconfigurable supply chain performance: a bibliometric analysis. In: PRO-VE 2021. IFIP Advances in Information and Communication Technology, Saint Etienne, France (2021). https://doi.org/10.1007/978-3-030-85969-5_14
Chuu, S.-J.: Evaluating the flexibility in a manufacturing system using fuzzy multi-attribute group decision-making with multi-granularity linguistic information. Int. J. Adv. Manuf. Technol. 32, 409–421 (2007). https://doi.org/10.1007/s00170-005-0342-0
Guan, J.: Measurement of manufacturing system flexibility with fuzzy set theory. In: 2008 International Conference on Management Science and Engineering 15th Annual Conference Proceedings, pp. 713–718. IEEE, Long Beach, CA (2008)
Francalanza, E., Borg, J.C., Constantinescu, C.: A fuzzy logic based approach to explore manufacturing system changeability level decisions. Procedia CIRP. 41, 3–8 (2016). https://doi.org/10.1016/j.procir.2015.12.011
Lin, C.-T., Chiu, H., Tseng, Y.-H.: Agility evaluation using fuzzy logic. Int. J. Prod. Econ. 101, 353–368 (2006). https://doi.org/10.1016/j.ijpe.2005.01.011
Ma, B., Xia, L.X.X., Lim, R.: Modeling supply chain’s reconfigurability using fuzzy logic. In: 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007), pp. 234–241. IEEE, Patras (2007)
Zidi, S., Hamani, N., Kermad, L.: New metrics for measuring supply chain reconfigurability. J. Intell. Manuf. (2021). https://doi.org/10.1007/s10845-021-01798-9
Napoleone, A., Pozzetti, A., Macchi, M.: A framework to manage reconfigurability in manufacturing. Int. J. Prod. Res. 56, 3815–3837 (2018). https://doi.org/10.1080/00207543.2018.1437286
Wiendahl, H.P., Heger, C.L.: Justifying changeability: a methodical approach to achieving cost effectiveness. J. Manuf. Sci. Prod. 6, 33–40 (2004). https://doi.org/10.1515/IJMSP.2004.6.1-2.33
Biswas, P.: Modeling reconfigurability in supply chains using total interpretive structural modeling. J. Adv. Manag. Res. 14, 194–221 (2017). https://doi.org/10.1108/JAMR-09-2016-0071
Biswas, P., Kumar, S., Jain, V., Chandra, C.: Measuring supply chain reconfigurability using integrated and deterministic assessment models. J. Manuf. Syst. 52, 172–183 (2019). https://doi.org/10.1016/j.jmsy.2019.05.008
Farid, A.M.: Measures of reconfigurability and its key characteristics in intelligent manufacturing systems. J. Intell. Manuf. 28, 353–369 (2014). https://doi.org/10.1007/s10845-014-0983-7
Gumasta, K., Kumar Gupta, S., Benyoucef, L., Tiwari, M.K.: Developing a reconfigurability index using multi-attribute utility theory. Int. J. Prod. Res. 49, 1669–1683 (2011). https://doi.org/10.1080/00207540903555536
Maganha, I., Silva, C., Ferreira, L.M.D.F.: An analysis of reconfigurability in different business production strategies. IFAC-Pap. 52, 1028–1033 (2019). https://doi.org/10.1016/j.ifacol.2019.11.330
Wang, G.X., Huang, S.H., Yan, Y., Du, J.J.: Reconfiguration schemes evaluation based on preference ranking of key characteristics of reconfigurable manufacturing systems. Int. J. Adv. Manuf. Technol. 89, 2231–2249 (2016). https://doi.org/10.1007/s00170-016-9243-7
Dahane, M., Benyoucef, L.: An adapted NSGA-II algorithm for a Reconfigurable Manufacturing System (RMS) design under machines reliability constraints. In: Talbi, E.-G., Yalaoui, F., Amodeo, L. (eds.) Metaheuristics for production systems, pp. 109–130. Springer, Cham (2016)
Delorme, X., Malyutin, S., Dolgui, A.: A multi-objective approach for design of reconfigurable transfer lines. IFAC-Pap. 49, 509–514 (2016). https://doi.org/10.1016/j.ifacol.2016.07.675
Goyal, K.K., Jain, P.K., Jain, M.: Optimal configuration selection for reconfigurable manufacturing system using NSGA II and TOPSIS. Int. J. Prod. Res. 50, 4175–4191 (2012). https://doi.org/10.1080/00207543.2011.599345
Goyal, K.K., Jain, P.K.: Design of reconfigurable flow lines using MOPSO and maximum deviation theory. Int. J. Adv. Manuf. Technol. (2015). https://doi.org/10.1007/s00170-015-7760-4
Gupta, A., Jain, P.K., Kumar, D.: Configuration selection of reconfigurable manufacturing system based on performance. Int. J. Ind. Syst. Eng. 20, 209 (2015). https://doi.org/10.1504/IJISE.2015.069543
Mittal, K.K., Jain, P.K.: An overview of performance measures in reconfigurable manufacturing system. Procedia Eng. 69, 1125–1129 (2014). https://doi.org/10.1016/j.proeng.2014.03.100
Prasad, D., Jayswal, S.C.: Assessment of a reconfigurable manufacturing system. Benchmarking Int. J. BIJ-06-2018-0147 (2019). https://doi.org/10.1108/BIJ-06-2018-0147
Kelepouris, T., Wong, C.Y., Farid, A.M., Parlikad, A.K., McFarlane, D.C.: Towards a reconfigurable supply network model. In: Intelligent Production Machines and Systems, pp. 481–486. Elsevier (2006)
Fine, C.H.: Clockspeed: Winning Industry Control in the Age of Temporary Advantage. Perseus Books, New York (1998)
Voordijk, H., Meijboom, B., de Haan, J.: Modularity in supply chains: a multiple case study in the construction industry. Int. J. Oper. Prod. Manag. 26, 600–618 (2006). https://doi.org/10.1108/01443570610666966
Wolters, M.J.J.: The business of modularity and the modularity of buisiness. Selbstverl, Rotterdam (1999)
Bouaissi, A., Allaoui, H., Jean-Christophe, N.: La modularité produit et chaîne logistique dans un contexte collaboratif et durable: revue de littérature et cadre conceptuel. In: Xème Conférence Internationale: Conception et Production Intégrées. Tanger, Morocco (2015)
Fabbe-Costes, N.: La gestion des chaînes logistiques multi-acteurs: les dimensions organisationnelles d’une gestion lean et agile (2007)
Serdarasan, S.: A review of supply chain complexity drivers. Comput. Ind. Eng. 66, 533–540 (2013). https://doi.org/10.1016/j.cie.2012.12.008
Beaulieu, M.: Définir et maîtriser la complexité des réseaux de logistique à rebours. 20 (2000)
Sheffi, Y., Rice, J.B., Jr.: A supply chain view of the resilient enterprise. MIT Sloan Manag. Rev. 47, 12 (2005)
Caridi, M., Crippa, L., Perego, A., Sianesi, A., Tumino, A.: Do virtuality and complexity affect supply chain visibility? Int. J. Prod. Econ. 127, 372–383 (2010). https://doi.org/10.1016/j.ijpe.2009.08.016
Ball, M.O., Ma, M., Raschid, L., Zhao, Z.: Supply chain infrastructures: system integration and information sharing. ACM SIGMOD Rec. 31, 61–66 (2002). https://doi.org/10.1145/507338.507350
Durowoju, O., Chan, H., Wang, X.: The impact of security and scalability of cloud service on supply chain performance. J. Electron. Commer. Res. 12, 243–256 (2011)
Zebardast, M., Malpezi, S., Taisch, M.: Mass customization in supply chain level: development of a conceptual framework to manage and assess performance. In: Prabhu, V., Taisch, M., Kiritsis, D. (eds.) Advances in Production Management Systems. Sustainable Production and Service Supply Chains, pp. 81–90. Springer, Berlin (2013)
Chandra, C., Kamrani, A.: Mass Customization. Springer, Boston (2004)
Zidi, S., Hamani, N., Kermad, L.: Classification of reconfigurability characteristics of supply chain. In: 8th Changeable, Agile, Reconfigurable and Virtual Production Conference (CARV). Aalborg City University, Denmark (2021).
Zidi, S., Hamani, N., Kermad, L.: Modularity metric in reconfigurable supply chains. In: Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. Part V, IFIP AICT 634. Springer, Cham. (2021). https://doi.org/10.1007/978-3-030-85914-5_49
Zadeh, L.A.: Fuzzy sets. Inf. Control. 8, 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X
Ashrafzadeh, M., Mokhatab Rafiei, F., Mollaverdi, N., Zare, Z.: Application of fuzzy TOPSIS method for the selection of Warehouse location: a case study. Interdiscipl. J. Contemp. Res. Bus. 3, 655–671 (2012)
Pourjavad, E., Shahin, A.: The application of Mamdani fuzzy inference system in evaluating green supply chain management performance. Int. J. Fuzzy Syst. 20, 901–912 (2018). https://doi.org/10.1007/s40815-017-0378-y
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zidi, S., Hamani, N., Samir, B. et al. Use of Fuzzy Logic for Reconfigurability Assessment in Supply Chain. Int. J. Fuzzy Syst. 24, 1025–1045 (2022). https://doi.org/10.1007/s40815-021-01187-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-021-01187-7