Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Event-Triggered Finite-Time Adaptive Fuzzy Tracking Control for Stochastic Nontriangular Structure Nonlinear Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This article discusses the problem of event-triggered finite-time control (ETFTC) for a class of stochastic nontriangular structure nonlinear systems. By employing the Mean Value Theorem, the stochastic nontriangular structure nonlinear systems are transformed into the equivalent systems with affine structure. Fuzzy logic systems (FLSs) are utilized to identify the unknown nonlinear functions. A finite-time performance function (FTPF) is introduced in the backstepping design process to guarantee that the tracking error satisfies the predefined performance in a finite time. An improved event-triggered control mechanism is introduced to reduce the communication burden from the controller to the actuator. Furthermore, the results show that all the signals in the closed-loop system are bounded in probability, and the tracking error is confined to a given set at any settling time. The effectiveness and suitability of the proposed method are verified by two simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zhu, Q.D., Liu, Y.C., Wen, G.X.: Adaptive neural network control for time-varying state constrained nonlinear stochastic systems with input saturation. Inf. Sci. 527, 191–209 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Min, H.F., Xu, S.Y., Yu, X., Fei, S.M., Cui, G.Z.: Adaptive tracking control for stochastic nonlinear systems with full-state constraints and unknown covariance noise. Appl. Math. Comput. (2020). https://doi.org/10.1016/j.amc.2020.125397

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhu, Q.D., Liu, Y.C., Wen, G.X.: Adaptive neural network output feedback control for stochastic nonlinear systems with full state constraints. ISA Trans. 101, 60–68 (2020)

    Google Scholar 

  4. Liu, Z., Wang, F., Zhang, Y., Chen, C.L.P.: Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems. IEEE Trans. Cybern. 46(2), 524–534 (2016)

    Google Scholar 

  5. Wang, R., Liu, Y., Yu, F., Wang, J., Wang, X., Zhao, L.: A novel alleviating fuzzy control algorithm for a class of nonlinear stochastic systems in pure-feedback form. Fuzzy Sets Syst. 392, 195–209 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Namadchian, Z., Rouhani, M.: Observer-based adaptive neural control for switched stochastic pure-feedback systems with input saturation. Neurocomputing 375, 80–90 (2020)

    Google Scholar 

  7. Wang, H., Liu, X.P., Niu, B.: Robust fuzzy adaptive tracking control for nonaffine stochastic nonlinear switching systems. IEEE Trans. Cybern. 48(8), 2462–2471 (2018)

    Google Scholar 

  8. Li, Y.M., Ma, Z., Tong, S.C.: Adaptive fuzzy output-constrained fault-tolerant control of nonlinear stochastic large-scale systems with actuator faults. IEEE Trans. Cybern. 47(9), 2362–2376 (2017)

    Google Scholar 

  9. Sun, Y.M., Chen, B., Lin, C., Wang, H., Zhou, S.: Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach. Inf. Sci. 369, 748–764 (2016)

    MATH  Google Scholar 

  10. Yu, Z., Li, S., Yu, Z., Li, F.: Adaptive neural output feedback control for nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis and unknown control directions. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1147–1160 (2018)

    MathSciNet  Google Scholar 

  11. Wang, T., Qiu, J., Gao, H., Wang, C.: Network-based fuzzy control for nonlinear industrial processes with predictive compensation strategy. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2137–2147 (2017)

    Google Scholar 

  12. Ma, H., Zhou, Q., Bai, L., Liang, H.: Observer-based adaptive fuzzy fault-tolerant control for stochastic nonstrict-feedback nonlinear systems with input quantization. IEEE Trans. Syst. Man Cybern. Syst. 49(2), 287–298 (2019)

    Google Scholar 

  13. Niu, B., Ahn, C.K., Li, H., Liu, M.: Adaptive control for stochastic switched nonlower triangular nonlinear systems and its application to a one-link manipulator. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1701–1714 (2018)

    Google Scholar 

  14. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Khoo, S., Yin, J., Man, Z., Yu, X.: Finite-time stabilization of stochastic nonlinear systems in strict-feedback form. Automatica 49(5), 1403–1410 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Sui, S., Chen, C.L.P., Tong, S.C.: Fuzzy adaptive finite-time control design for nontriangular stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 27(1), 172–184 (2019)

    Google Scholar 

  17. Sui, S., Chen, C.L.P., Tong, S.C., Feng, S.: Finite-time adaptive quantized control of stochastic nonlinear systems with input quantization: a broad learning system based identification method. IEEE Trans. Ind. Electron. 67(10), 8555–8565 (2020)

    Google Scholar 

  18. Wang, F., Zhang, L.L., Zhou, S.: Neural network-based finite-time control of quantized stochastic nonlinear systems. Neurocomputing 362, 195–202 (2019)

    Google Scholar 

  19. Liu, C.G., Liu, X.P., Huang, H.Q., Zhou, Y.C., Liu, S.Y.: Finite-time adaptive tracking control for unknown nonlinear systems with a novel barrier Lyapunov function. Inf. Sci. 528, 231–245 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Chen, W.S., Ge, S.S., Wu, J., Gong, M.: Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 1842–1854 (2015)

    MathSciNet  Google Scholar 

  21. Wu, J., Chen, X.M., Zhao, Q.J.: Adaptive neural dynamic surface control with prespecified tracking accuracy of uncertain stochastic nonstrict-feedback systems. IEEE Trans. Cybern. 99, 1–14 (2020)

    Google Scholar 

  22. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Liu, Y.L., Ma, H.J.: Adaptive fuzzy tracking control of nonlinear switched stochastic systems with prescribed performance and unknown control directions. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–10 (2017)

    Google Scholar 

  24. Hua, C.C., Zhang, L.L., Guan, X.P.: Decentralized output feedback adaptive NN tracking control for time-delay stochastic nonlinear systems with prescribed performance. IEEE Trans. Neural Netw. Learn. Syst. 174(11), 2749–2759 (2015)

    MathSciNet  Google Scholar 

  25. Si, W.J., Dong, X.D., Yang, F.F.: Decentralized adaptive neural prescribed performance control for high-order stochastic switched nonlinear interconnected systems with unknown system dynamics. ISA Trans. 84, 55–68 (2019)

    Google Scholar 

  26. Zhou, Q., Li, H.Y., Wang, L.J., Lu, R.Q.: Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1747–1758 (2018)

    Google Scholar 

  27. Sui, S., Tong, S.C., Li, Y.M.: Observer-based fuzzy adaptive prescribed performance tracking control for nonlinear stochastic systems with input saturation. Neurocomputing 158, 100–108 (2015)

    Google Scholar 

  28. Si, W.J., Dong, X.D., Yang, F.F.: Adaptive neural prescribed performance control for a class of strict-feedback stochastic nonlinear systems with hysteresis input. Neurocomputing 251(16), 35–44 (2017)

    Google Scholar 

  29. Liu, H., Li, X.H., Liu, X.P., Wang, H.Q.: Adaptive neural network prescribed performance bounded \(H^{\infty } \) tracking control for a class of stochastic nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 31(6), 2140–2152 (2020)

    MathSciNet  Google Scholar 

  30. Liu, Y., Liu, X.P., Jing, Y.W.: Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance. Inf. Sci. 468, 29–46 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Liu, Y., Liu, X.P., Jing, Y.W., Zhang, Z.Y.: Direct adaptive preassigned finite-time control with time-delay and quantized input using neural network. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1222–1231 (2019)

    MathSciNet  Google Scholar 

  32. Liu, Y., Liu, X.P., Jing, Y.W., Zhang, Z.Y.: A novel finite-time adaptive fuzzy tracking control scheme for nonstrict feedback systems. IEEE Trans. Fuzzy Syst. 27(4), 646–658 (2019)

    Google Scholar 

  33. Zhou, T.Y., Liu, C.G., Liu, X.P., Wang, H.Q., Zhou, Y.C.: Finite-time prescribed performance adaptive fuzzy control for unknown nonlinear systems. Fuzzy Sets Syst. (2020). https://doi.org/10.1016/j.fss.2020.03.010

    Article  MATH  Google Scholar 

  34. Sui, S., Chen, C.L.P., Tong, S.C.: A novel adaptive NN prescribed performance control for stochastic nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.3010333

    Article  Google Scholar 

  35. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Liu, T.F., Jiang, Z.P.: A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Trans. Autom. Control 60(8), 2072–2085 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Anta, A., Tabuada, P.: To sample or not to sample: selftriggered control for nonlinear systems. IEEE Trans. Autom. Control 55(9), 2030–2042 (2010)

    MATH  Google Scholar 

  38. Huang, Y.X., Liu, Y.G.: Practical tracking via adaptive event-triggered feedback for uncertain nonlinear systems. IEEE Trans. Autom. Control 64(9), 3920–3927 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Ma, H., Li, H.Y., Liang, H.J., Dong, G.W.: Adaptive fuzzy event-triggered control for a stochastic nonlinear systems with full state constraints and actuator faults. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2896843

    Article  Google Scholar 

  40. Xing, L.T., Wen, C.Y., Liu, Z.T., Su, H.Y., Cai, J.P.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Gao, C., Zhang, C., Liu, X.: Event-triggering based adaptive neural tracking control for a class of pure-feedback systems with finite-time prescribed performance. Neurocomputing 382, 221–232 (2019)

    Google Scholar 

  42. Gao, C., Liu, X., Yang, Y.H., Liu, X.P., Li, P.: Event-triggered finite-time adaptive neural control for nonlinear nonstrict-feedback time-delay systems with disturbances. Inf. Sci. 536, 1–24 (2020)

    Google Scholar 

  43. Li, B.M., Xia, J.W., Zhang, H.S., Shen, H., Wang, Z.: Event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems. J. Frankl. Inst. (2020). https://doi.org/10.1016/j.jfranklin.2020.07.023

    Article  MathSciNet  MATH  Google Scholar 

  44. Sui, S., Chen, C.L.P., Tong, S.C.: Event-trigger-based finite-time fuzzy adaptive control for stochastic nonlinear system with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 99, 1 (2020)

    Google Scholar 

  45. Xia, J.W., Li, B.M., Su, S.F., Sun, W., Shen, H.: Finite-time command filtered event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2985638

    Article  Google Scholar 

  46. Li, Y.M., Shao, X.F., Tong, S.C.: Adaptive fuzzy prescribed performance control of non-triangular structure nonlinear systems. IEEE Trans. Fuzzy Syst. 99, 1 (2019)

    Google Scholar 

  47. Deng, H., Krstic, M.: Stochastic nonlinear stabilization, Part I: a backstepping design. Syst. Control Lett. 32(3), 143–150 (1997)

    MATH  Google Scholar 

  48. Zhang, C.H., Yang, G.H.: Event-triggered global finite-time control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 65(3), 1340–1347 (2020)

    MathSciNet  MATH  Google Scholar 

  49. Vadivel, R., Hammachukiattikul, P., Rajchakit, G., Ali, M.S., Unyong, B.: Finite-time event-triggered approach for recurrent neural networks with leakage term and its application. Math. Comput. Simul. (2020). https://doi.org/10.1016/j.matcom.2020.12.001

    Article  MATH  Google Scholar 

  50. Salmanpour, Y., Arefi, M.M., Khayatian, A., Kaynak, O.: Event-triggered fuzzy adaptive leader-following tracking control of non-affine multi-agent systems with finite-time output constraint and input saturation. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2021.3050847

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61603003 and 61472466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieqing Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Tan, J. & Wu, J. Event-Triggered Finite-Time Adaptive Fuzzy Tracking Control for Stochastic Nontriangular Structure Nonlinear Systems. Int. J. Fuzzy Syst. 23, 2157–2169 (2021). https://doi.org/10.1007/s40815-021-01085-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01085-y

Keywords

Navigation