Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Integrated Interval-Valued Intuitionistic Fuzzy Vague Set and Their Linguistic Variables

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Interval-valued intuitionistic fuzzy sets and vague sets are two sets that are commonly used in expressing vague and uncertain information. Despite their commonality, these two sets are characterized by different memberships. Interval-valued intuitionistic fuzzy sets are characterized by membership and non-membership with the sum of these memberships being less or equal than one. On the other hand, vague sets are characterized by either truth or false memberships with no clear-cut values of their sum. However, these two sets have shown a great extent of superiority in dealing with uncertain and imprecise information despite differences in the memberships. Therefore, it is a worthy effort to develop a new generic set by combining these two sets: interval-valued intuitionistic fuzzy sets and vague sets. In this paper, the notion of interval-valued intuitionistic fuzzy vague sets (IVIFVS) is proposed where membership and non-membership of interval-valued intuitionistic fuzzy sets are combined with truth membership and false membership of vague sets. To complement this new definition, several mathematical propositions, algebraic relations and arithmetic operations of IVIFVS are presented. Moreover, a new linguistic variable of IVIFVS with five linguistic scales that are normally used in solving multi-criteria decision-making problems is developed. Some examples are provided to illustrate the conceptual definitions and linguistic variables of the new sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Zhang, H., Yu, L.: MADM method based on cross-entropy and extended TOPSIS with interval-valued intuitionistic fuzzy sets. Knowl. Syst. 30, 115–120 (2012)

    Article  Google Scholar 

  3. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MATH  Google Scholar 

  4. Govindan, K., Khodaverdi, R., Vafadarnikjoo, A.: Intuitionistic fuzzy based DEMATEL method for developing green practices and performances in a green supply chain. Expert Syst. Appl. 42, 7207–7220 (2015)

    Article  Google Scholar 

  5. Singh, P., Huang, Y., Wu, S.: An intuitionistic fuzzy set approach for multi-attribute information classification and decision-making. Int. J. Fuzzy Syst. 22, 1506–1520 (2020)

    Article  Google Scholar 

  6. Atan, Ö., Kutlu, F., Castillo, O.: Intuitionistic fuzzy sliding controller for uncertain hyperchaotic synchronization. Int. J. Fuzzy Syst. 22, 1430–1443 (2020)

    Article  MathSciNet  Google Scholar 

  7. Liu, P., Ali, A., Rehman, N., et al.: Another view on intuitionistic fuzzy preference relation-based aggregation operators and their applications. Int. J. Fuzzy Syst. 22, 1786 (2020)

    Article  MathSciNet  Google Scholar 

  8. Xu, Z.S., Liao, H.C.: A survey of approaches to decision making with intuitionistic fuzzy preference relations. Knowl. Syst. 80, 131–142 (2015)

    Article  Google Scholar 

  9. Yu, D.J., Liao, H.C.: Visualization and quantitative research on intuitionistic fuzzy studies. J. Intell. Fuzzy Syst. 30(6), 3653–3663 (2016)

    Article  Google Scholar 

  10. Atanassov, K., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Atanassov, K.: Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 64, 159–174 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burillo, P., Bustince, H.: Two operators on interval-valued intuitionistic fuzzy sets: part I. ComptesRendus De L’AcamdemieBulgare Des Sciences 47, 9–12 (1994)

    MATH  Google Scholar 

  13. Burillo, P., Bustince, H.: Two operators on interval-valued intuitionistic fuzzy sets: part II. ComptesRendus De L’AcamdemieBulgare Des Sciences 48, 17–20 (1995)

    MATH  Google Scholar 

  14. Bustince, H., Burillo, P.: Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 74, 237–244 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong, D.H.: A note on correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 95, 113–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mondal, T.K., Samanta, S.K.: Topology of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 119, 483–494 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, S.M., Yang, M.W., Yang, S.W., Sheu, T.W., Liau, C.J.: Multicriteria fuzzy decision making based on interval-valued intuitionistic fuzzy sets. Expert Syst. Appl. 39(15), 12085–12091 (2012)

    Article  Google Scholar 

  18. Liao, H.C., Xu, Z.S., Xia, M.M.: Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation. J. Intell. Fuzzy Syst. 27(6), 2969–2985 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Abdullah, L., Najib, L.: A new preference scale MCDM method based on interval-valued intuitionistic fuzzy sets and analytic hierarchy process. Soft. Comput. 20, 511–523 (2016)

    Article  Google Scholar 

  20. Buyukozkan, G., Gocer, F.: An extension of ARAS methodology under Interval valued intuitionistic fuzzy environment for digital supply chain. Appl. Soft Comput. 69, 634–654 (2018)

    Article  Google Scholar 

  21. Kong, D., Chang, T., Pan, J., Hao, N., Kehu, N., Zhang, L., Yang, G.Z.: A decision variable-based combinatorial optimization approach for interval-valued intuitionistic fuzzy MAGDM. Inf. Sci. 48, 197–218 (2019)

    Article  Google Scholar 

  22. Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Trans. Syst. Man. Cybern. 23(2), 610–614 (1993)

    Article  MATH  Google Scholar 

  23. Bhaumik, H., Bhattacharyya, S., Chakraborty, S.: A vague set approach for identifying shot transition in videos using multiple feature amalgamation. Appl. Soft Comput. 75, 633–651 (2019)

    Article  Google Scholar 

  24. Elzarka, H.M., Yan, H., Chakraborty, D.: A vague set fuzzy multi-attribute group decision-making model for selecting onsite renewable energy technologies for institutional owners of constructed facilities. Sustain. Cities Soc. 35, 430–439 (2017)

    Article  Google Scholar 

  25. Singh, P., Verma, M., Kumar, A.: A novel method for ranking of vague sets for handling the risk analysis of compressor system. Appl. Soft Comput. 26, 202–212 (2015)

    Article  Google Scholar 

  26. Lu, S., Wang, J., Bao, H.: Study on urban water security evaluation based on the vague set similarity model. Energy Procedia 88, 309–312 (2016)

    Article  Google Scholar 

  27. Qin, L., Li, K., Li, Y., Liang, R., Hodges, B.R.: A habitat similarity model based on vague sets to assess Schizothoraxprenanti spawning habitat. Ecol. Eng. 96, 86–93 (2016)

    Article  Google Scholar 

  28. Mukerjee, S., Das, A.: Vague set theory based segmented image fusion technique for analysis of anatomical and functional images. Expert Syst. Appl. 159, 113592 (2020)

    Article  Google Scholar 

  29. Xu, W., Ma, J., Wang, S., Hao, G.: Vague soft sets and their properties. Comput. Math. Appl. 59(2), 787 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hassan, N., Alhazaymeh, K.: Vague soft expert set theory. AIP Conf. Proc. 1522, 953–958 (2013)

    Article  MATH  Google Scholar 

  31. Selvachandran, G., Maji, P.K., Abed, I.E., Salleh, A.R.: Complex vague soft sets and its distance measures. J. Intell. Fuzzy Syst. 31(1), 55–68 (2016)

    Article  MATH  Google Scholar 

  32. Alhazaymeh, K., Hassan, N.: Interval-valued vague soft sets and its application. Adv. Fuzzy Syst. 2012, 1–7 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Al-Quran, A., Hassan, A.: Neutrosophic vague soft set and its applications. Malays. J. Math. Sci. 11(2), 141–163 (2017)

    Google Scholar 

  34. Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst. 79, 403–405 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lu, A., Ng, W.: Vague sets or intuitionistic fuzzy sets for handling vague data: which one is better? (2005) http://ftp.cse.ust.hk/faculty/wilfred/paper/er05.pdf

  36. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8(8), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tang, J., Meng, F., Cabrerizo, F.J., Herrera-Viedma, E.: A procedure for group decision making with interval-valued intuitionistic linguistic fuzzy preference relations. Fuzzy Optim. Decis. Mak. 18, 493 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, Z.C., Liu, P.H., Pei, Z.: An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int. J. Comput. Intell. Syst. 8, 747–760 (2015)

    Article  Google Scholar 

  39. Atanassov, K.: Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg (1999)

    Book  MATH  Google Scholar 

  40. Zhang, S.F., Liu, S.Y.: A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel selection. Experts Syst. Appl. 38, 11401–11405 (2011)

    Article  Google Scholar 

  41. Dong, W.M., Wong, F.S.: Fuzzy weighted averages and implementation of the extension principle. Fuzzy Sets Syst. 21(2), 183–199 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zeng, Z., Su, W.: Intuitionistic fuzzy ordered weighted distance operator. Knowl. Based Syst. 24(8), 1224–1232 (2011)

    Article  Google Scholar 

  43. Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15, 1179–1187 (2007)

    Article  Google Scholar 

  44. Zhang, D., Zhang, J., Lai, K.K., Lu, Y.: An novel approach to supplier selection based on vague sets group decision. Expert Syst. Appl. 36, 9557–9563 (2009)

    Article  Google Scholar 

  45. Ye, J.: Multi-criteria fuzzy decision-making method using entropy weights-based correlation coefficients of intervalvalued intuitionistic fuzzy sets. Appl. Math. Model. 34, 3864–3870 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yu, D., Wu, Y., Lu, T.: Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making. Knowl. Syst. 30, 57–66 (2012)

    Article  Google Scholar 

  47. Lin, K.S.: New multi-criteria group decision making method based on vague set theory. Am. J. Eng. Res. 5(10), 317–323 (2016)

    Google Scholar 

Download references

Acknowledgements

This scientific study was supported by Fundamental Research Grant Scheme, Ministry of Higher Education, Malaysia and University Malaysia Terengganu with vote number FRGS/1/2018/STG06/UMT/01/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazim Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulkifli, N., Abdullah, L. & Garg, H. An Integrated Interval-Valued Intuitionistic Fuzzy Vague Set and Their Linguistic Variables. Int. J. Fuzzy Syst. 23, 182–193 (2021). https://doi.org/10.1007/s40815-020-01011-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01011-8

Keywords

Navigation