Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Adaptive DE Algorithm Based Fuzzy Logic Anti-swing Controller for Overhead Crane Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, aiming at the under-actuated problem of the overhead crane systems, a fuzzy logic anti-swing controller is first designed according to operator experience. Moreover, for better configuring the parameters of the controller, an adaptive differential evolution with disturbance factor algorithm (ADE-D) is proposed by introducing the adaptive scaling factor, the dynamic crossover probability and disturbance factor. By implementing numeric experiment test, the results show that the adaptive differential evolution with disturbance factor algorithm outperforms the standard differential evolution algorithm and other improved differential evolution algorithms. Finally, the adaptive differential evolution with disturbance factor algorithm-based fuzzy logic anti-swing controller is simulated under different conditions and compared with other control methods; the results exhibit excellent robustness of control performance in positioning control and damping oscillation of payload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Singhose, W., Porter, L., Kenison, M., Kriikku, E.: Effects of hoisting on the input shaping control of gantry cranes. Control Eng. Pract. 8(10), 1159–1165 (2000)

    Article  Google Scholar 

  2. Sorensen, K.L., Singhose, W.E.: Command-induced vibration analysis using input shaping principles. Automatica 44(9), 2392–2397 (2008)

    Article  MathSciNet  Google Scholar 

  3. Yoshida, Y., Tabata, H.: Visual feedback control of an overhead crane and its combination with time-optimal control. In: 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1114–1119 (2008)

  4. Sun, Z., Wang, N., Bi, Y., Zhao, J.: A de based pid controller for two dimensional overhead crane. In: 2015 34th Chinese Control Conference (CCC), pp. 2546–2550 (2015)

  5. Sano, H., Sato, K., Ohishi, K., Miyazaki, T.: Robust design of vibration suppression control system for crane using sway angle observer considering friction disturbance. Electrical Eng. Japan 184(3), 36–46 (2013)

    Article  Google Scholar 

  6. Sun, N., Fang, Y.: Nonlinear tracking control of underactuated cranes with load transferring and lowering: theory and experimentation. Automatica 50(9), 2350–2357 (2014)

    Article  MathSciNet  Google Scholar 

  7. Sun, N., Fang, Y., Chen, H., Lu, B.: Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics. IEEE Trans. Ind. Electron 64(3), 2135–2146 (2017)

    Article  Google Scholar 

  8. Sun, N., Fang, Y., Chen, H.: Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics. IEEE Trans. Ind. Electron 64(3), 2135–2146 (2017)

    Article  Google Scholar 

  9. Sun, N., Fang, Y., Chen, H., He, B.: Adaptive nonlinear crane control with load hoisting/lowering and unknown parameters: design and experiments. IEEE/ASME Trans. Mechatronics 20(5), 2107–2119 (2015)

    Article  Google Scholar 

  10. Wu, Y., Lu, R., Shi, P., Su, H., Wu, Z.: Analysis and design of synchronization for heterogeneous network. IEEE Trans. Cybern. 48(4), 1253–1262 (2018)

    Article  Google Scholar 

  11. Du, C., Yang, C., Li, F., Gui, W.: A novel asynchronous control for artificial delayed markovian jump systems via output feedback sliding mode approach. IEEE Trans. Syst. Man Cybern. Syst. 49(2), 364–374 (2019)

    Article  Google Scholar 

  12. Xie, X., Yue, D., Zhang, H., Peng, C.: Control synthesis of discrete-time t-s fuzzy systems: reducing the conservatism whilst alleviating the computational burden. IEEE Trans. Cybern. 47(9), 2480–2491 (2017)

    Article  Google Scholar 

  13. Xie, X., Yue, D., Park, J.H., Li, H.: Relaxed fuzzy observer design of discrete-time nonlinear systems via two effective technical measures. IEEE Trans. Fuzzy Syst. 26(5), 2833–2845 (2018)

    Article  Google Scholar 

  14. Zhai, D., An, L., Dong, J., Zhang, Q.: Switched adaptive fuzzy tracking control for a class of switched nonlinear systems under arbitrary switching. IEEE Tran. Fuzzy Syst. 26(2), 585–597 (2018)

    Article  Google Scholar 

  15. Wang, Y., Yang, X., Yan, H.: Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. IEEE Trans. Ind. Electron. 66(12), 9439–9447 (2019)

    Article  Google Scholar 

  16. Wang, Y., Karimi, H.R., Lam, H., Yan, H.: Fuzzy output tracking control and filtering for nonlinear discrete-time descriptor systems under unreliable communication links. IEEE Transactions on Cybernetics, pp. 1–11 (2019)

  17. Wang, Y., Zhou, W., Luo, J., Yan, H., Pu, H., Peng, Y.: Reliable intelligent path following control for a robotic airship against sensor faults. IEEE/ASME Trans. Mechatronics 24 (6), 2572–2582 (2019)

    Article  Google Scholar 

  18. Wei, Y., Qiu, J., Shi, P., Wu, L.: A piecewise-markovian lyapunov approach to reliable output feedback control for fuzzy-affine systems with time-delays and actuator faults. IEEE Trans. Cybern. 48(9), 2723–2735 (2018)

    Article  Google Scholar 

  19. Wei, Y., Qiu, J., Lam, H.K.: A novel approach to reliable output feedback control of fuzzy-affine systems with time delays and sensor faults. IEEE Trans. Fuzzy Syst.25(6), 1808–1823 (2017)

    Article  Google Scholar 

  20. Wang, L., Zhang, H., Kong, Z.: Anti-swing control of overhead crane based on double fuzzy controllers. In: The 27th Chinese Control and Decision Conference (2015 CCDC), pp. 981–986 (2015)

  21. Zhang, L., Chen, W., Cui, T., Tong, X.: An online secondary path modeling algorithm based on gradient descent for active noise control. Noise Vibration Control 38(3), 15–19 (2018)

    Google Scholar 

  22. Han, X., Dong, Y., Yue, L., Xu, Q.: State transition simulated annealing algorithm for discrete-continuous optimization problems. IEEE Access 7, 44391–44403 (2019)

    Article  Google Scholar 

  23. Gao, X.M., Yang, Y., Wu, Z.H.: Genetic algorithm for scheduling double different size crane system with different truck ready times. In: 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 447–451 (2016)

  24. Smoczek, J., Szpytko, J.: Particle swarm optimization-based multivariable generalized predictive control for an overhead crane. IEEE/ASME Trans. Mechatronics 22(1), 258–268 (2017)

    Article  Google Scholar 

  25. Juang, C., Jeng, T., Chang, Y.: An interpretable fuzzy system learned through online rule generation and multiobjective aco with a mobile robot control application. IEEE Trans. Cybern. 46(12), 2706–2718 (2016)

    Article  Google Scholar 

  26. Reynoso-Meza, G., Sanchis, J., Blasco, X. Design of continuous controllers using a multiobjective differential evolution algorithm with spherical pruning. In: International Conference on Applications of Evolutionary Computation, pp. 532–541 (2010)

  27. Das, S., Mandal, A., Mukherjee, R.: An adaptive differential evolution algorithm for global optimization in dynamic environments. IEEE Trans Cybern 44(6), 966–978 (2014)

    Article  Google Scholar 

  28. Fan, Q., Yan, X.: Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies. IEEE Trans. Cybern. 46(1), 219–232 (2016)

    Article  Google Scholar 

  29. Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)

    Article  Google Scholar 

  30. Sun, Z., Wang, N., Srinivasan, D., Bi, Y.: Optimal tunning of type-2 fuzzy logic power system stabilizer based on differential evolution algorithm. Int. J. Electrical Power Energy Syst.62, 19–28 (2014)

    Article  Google Scholar 

  31. Do, D.T., Lee, S., Lee, J.: A modified differential evolution algorithm for tensegrity structures. Composite Struct. 158(Supplement C), 11–19 (2016)

    Article  Google Scholar 

  32. Fu, C., Jiang, C., Chen, G., Liu, Q.: An adaptive differential evolution algorithm with an aging leader and challengers mechanism. Appl. Soft Comput.57(Supplement C), 60–73 (2017)

    Article  Google Scholar 

  33. Suganthi, S., Devaraj, D., Ramar, K., Thilagar, S.H.: An improved differential evolution algorithm for congestion management in the presence of wind turbine generators. Renew. Sust. Energy Rev. 81(Part 1), 635–642 (2018)

    Article  Google Scholar 

  34. Cui, L., Li, G., Zhu, Z., Lin, Q., Wong, K.C., Chen, J., et al.: Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism. Inform. Sci. 422(Supplement C), 122–143 (2018)

    Article  MathSciNet  Google Scholar 

  35. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  36. Sun, Z., Wang, N., Bi, Y., Srinivasan, D.: Parameter identification of pemfc model based on hybrid adaptive differential evolution algorithm. Energy 90, 1334–1341 (2015)

    Article  Google Scholar 

  37. Chellaswamy, C., Ramesh, R.: Parameter extraction of solar cell models based on adaptive differential evolution algorithm. Renew. Energy 97, 823–837 (2016)

    Article  Google Scholar 

  38. Wang, X., Liu, H., Lai, X., Xu, Z., Jiang, R.: A new approach of anti-swing control system based on run-to-run control and fuzzy control for overhead crane. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 1264–1270 (2017)

  39. Liu, J., Zheng, S., Tan, Y.: Analysis on global convergence and time complexity of fireworks algorithm. In: IEEE Congress on Evolutionary Computation (CEC). IEEE, New York, 2014, pp. 3207–3213 (2014)

  40. Sun, Z., Bi, Y., Chen, S., Hu, B., Xiang, F., Ling, Y., et al.: Designing and optimization of fuzzy sliding mode controller for nonlinear systems. Comput. Mater. Continua 61(1), 119–128 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (No. 61672299, No. 61972208,No. 61602259, No. 61701251, No. 61803213 and 61972211), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJB520035, No. 18KJB510016) and National Engineering Laboratory for Logistics Information Technology, YuanTong Express Co. LTD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Ling, Y., Qu, H. et al. An Adaptive DE Algorithm Based Fuzzy Logic Anti-swing Controller for Overhead Crane Systems. Int. J. Fuzzy Syst. 22, 1905–1921 (2020). https://doi.org/10.1007/s40815-020-00883-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00883-0

Keywords

Navigation