Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Non-weighted Asynchronous \(H_{\infty }\) Filtering for Continuous-Time Switched Fuzzy Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper focuses on the non-weighted asynchronous \(H_{\infty }\) filtering problem for a class of continuous-time switched nonlinear systems. The nonlinearities of subsystems are described by Takagi–Sugeno (T-S) fuzzy models. Using the information of switching instants, the filters are designed to be time-scheduled and separately in the asynchronous and synchronous time intervals. Based on a new time-scheduled fuzzy multiple Lyapunov function (TSFMLF), sufficient conditions are achieved to guarantee the switched filtering error system is globally asymptotically stable with a non-weighted \(H_{\infty }\) performance. Finally, an example is presented to demonstrated the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ma, Y., Kawakami, H., Tse, C.: Bifurcation analysis of switched dynamical systems with periodically moving borders. IEEE Trans. Circuits Syst. I Regul. Pap. 51(6), 1184–1193 (2004). https://doi.org/10.1109/TCSI.2004.829240

    Article  MathSciNet  MATH  Google Scholar 

  2. Lee, T.C., Jiang, Z.P.: Uniform asymptotic stability of nonlinear switched systems with an application to mobile robots. IEEE Trans. Autom. Control 53(5), 1235–1252 (2008). https://doi.org/10.1109/TAC.2008.923688

    Article  MathSciNet  MATH  Google Scholar 

  3. Lian, J., Li, C., Xia, B.: Sampled-data control of switched linear systems with application to an f-18 aircraft. IEEE Trans. Ind. Electron. 64(2), 1332–1340 (2017). https://doi.org/10.1109/TIE.2016.2618872

    Article  Google Scholar 

  4. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. In: Readings in Fuzzy Sets for Intelligent Systems, vol. 1, Elsevier, pp. 387–403, (1993), https://doi.org/10.1016/B978-1-4832-1450-4.50045-6

  5. Wang, G., Xie, R., Zhang, H., Yu, G., Dang, C.: Robust exponential \(H_\infty \) filtering for discrete-time switched fuzzy systems with time-varying delay. Circuits Syst. Signal Process. 35(1), 117–138 (2016). https://doi.org/10.1007/s00034-015-0062-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, M., Shi, P., Liu, Z., Ma, L., Su, H.: \(H_\infty \) filtering for discrete-time switched fuzzy systems with randomly occurring time-varying delay and packet dropouts. Signal Process. 143, 320–327 (2018). https://doi.org/10.1016/j.sigpro.2017.09.009

    Article  Google Scholar 

  7. Hong, Y., Zhang, H., Zheng, Q.: Asynchronous \(H_\infty \) filtering for switched T-S fuzzy systems and its application to the continuous stirred tank reactor. Int. J. Fuzzy Syst. 20(5), 1470–1482 (2018). https://doi.org/10.1007/s40815-018-0454-y

    Article  MathSciNet  Google Scholar 

  8. Shi, S., Fei, Z., Shi, P., Ahn, C.K.: Asynchronous filtering for discrete-time switched T-S fuzzy systems. IEEE Trans. Fuzzy Syst. PP(c):1–11, https://doi.org/10.1109/TFUZZ.2019.2917667(2019)

  9. Du, S., Qiao, J., Zhao, X., Wang, R.: Stability and \(L_1\)-gain analysis for switched positive T-S fuzzy systems under asynchronous switching. J. Frankl. Inst. 355(13), 5912–5927 (2018). https://doi.org/10.1016/j.jfranklin.2018.06.005

    Article  MATH  Google Scholar 

  10. Du, S., Qiao, J.: Stability analysis and \(L_1\)-gain controller synthesis of switched positive T-S fuzzy systems with time-varying delays. Neurocomputing 275, 2616–2623 (2018). https://doi.org/10.1016/j.neucom.2017.11.026

    Article  Google Scholar 

  11. Zheng, Q., Xu, S., Zhang, Z.: Nonfragile quantized \(H_\infty \) filtering for discrete-time switched T-S fuzzy systems with local nonlinear models. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2979675

    Article  Google Scholar 

  12. Zheng, Q., Guo, X., Zhang, H.: Mixed \(H_\infty \) and passive filtering for a class of nonlinear switched systems with unstable subsystems. Int. J. Fuzzy Syst. 20(3), 769–781 (2018). https://doi.org/10.1007/s40815-017-0340-z

    Article  MathSciNet  Google Scholar 

  13. Zhang, L., Dong, X., Qiu, J., Alsaedi, A., Hayat, T.: \(H_\infty \) filtering for a class of discrete-time switched fuzzy systems. Nonlinear Anal. Hybrid Syst. 14, 74–85 (2014). https://doi.org/10.1016/j.nahs.2014.05.009

    Article  MathSciNet  MATH  Google Scholar 

  14. Zheng, Q., Zhang, H.: \(H_\infty \) filtering for a class of nonlinear switched systems with stable and unstable subsystems. Signal Process. 141, 240–248 (2017). https://doi.org/10.1016/j.sigpro.2017.06.021

    Article  Google Scholar 

  15. Shi, S., Fei, Z., Wang, T., Xu, Y.: Filtering for switched T-S fuzzy systems with persistent dwell time. IEEE Trans. Cybern. 49(5), 1923–1931 (2019). https://doi.org/10.1109/TCYB.2018.2816982

    Article  Google Scholar 

  16. Xiang, W., Xiao, J., Iqbal, M.N.: \(H_\infty \) filtering for short-time switched discrete-time linear systems. Circuits Syst. Signal Process. 31(6), 1927–1949 (2012). https://doi.org/10.1007/s00034-012-9416-z

    Article  MathSciNet  MATH  Google Scholar 

  17. Shi, S., Ma, Y., Ren, S.: Asynchronous filtering for 2-D switched systems with missing measurements. Multidimens. Syst. Signal Process. 30(2), 543–560 (2019). https://doi.org/10.1007/s11045-018-0569-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, L., Cui, N., Liu, M., Zhao, Y.: Asynchronous filtering of discrete-time switched linear systems with average dwell time. IEEE Trans. Circuits Syst. I Regul. Pap. 58(5), 1109–1118 (2011). https://doi.org/10.1109/TCSI.2010.2092151

    Article  MathSciNet  Google Scholar 

  19. Lian, J., Mu, C., Shi, P.: Asynchronous \(H_\infty \) filtering for switched stochastic systems with time-varying delay. Inf. Sci. 224, 200–212 (2013). https://doi.org/10.1016/j.ins.2012.10.009

    Article  MathSciNet  MATH  Google Scholar 

  20. Xiang, W., Xiao, J.: \(H_\infty \) filtering for switched nonlinear systems under asynchronous switching. Int. J. Syst. Sci. 42(5), 751–765 (2011). https://doi.org/10.1080/00207721.2010.488763

    Article  MathSciNet  MATH  Google Scholar 

  21. Xiang, W., Xiao, J., Mahmoud, M.S.: \(H_\infty \) filtering for switched discrete-time systems under asynchronous switching: a dwell-time dependent Lyapunov functional method. Int. J. Adapt. Control Signal Process. 29(8), 971–990 (2015). https://doi.org/10.1002/acs.2513

    Article  MathSciNet  MATH  Google Scholar 

  22. Xiao, J., Xiang, W.: Convex sufficient conditions on asymptotic stability and \(L_2\) gain performance for uncertain discrete-time switched linear systems. IET Control Theory Appl. 8(3), 211–218 (2014a). https://doi.org/10.1049/iet-cta.2013.0409

    Article  MathSciNet  Google Scholar 

  23. Xiao, J., Xiang, W.: New results on asynchronous \(H_\infty \) control for switched discrete-time linear systems under dwell time constraint. Appl. Math. Comput. 242, 601–611 (2014b). https://doi.org/10.1016/j.amc.2014.05.097

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, L., Zhuang, S., Shi, P.: Non-weighted quasi-time-dependent \(H_\infty \) filtering for switched linear systems with persistent dwell-time. Automatica 54, 201–209 (2015). https://doi.org/10.1016/j.automatica.2015.02.010

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuan, S., Zhang, L., De Schutter, B., Baldi, S.: A novel Lyapunov function for a non-weighted \(L_2\) gain of asynchronously switched linear system. Automatica 87, 310–317 (2018). https://doi.org/10.1016/j.automatica.2017.10.018

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Y., Du, W., Xu, X., Zhang, H., Xia, J.: A novel approach to \(L_1\) filter design for asynchronously switched positive linear systems with dwell time. Int. J. Robust Nonlinear Control 29(17), 5957–5978 (2019). https://doi.org/10.1002/rnc.4702

    Article  MATH  Google Scholar 

  27. Mahmoud, M.S., Shi, P.: Asynchronous \(H_\infty \) filtering of discrete-time switched systems. Signal Process. 92(10), 2356–2364 (2012). https://doi.org/10.1016/j.sigpro.2012.02.007

    Article  Google Scholar 

  28. Wang, B., Zhang, H., Wang, G., Dang, C.: Asynchronous \(H_\infty \) filtering for linear switched systems with average dwell time. Int. J. Syst. Sci. 47(12), 2783–2791 (2016). https://doi.org/10.1080/00207721.2015.1023758

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Y., Xiang, W., Zhang, H., Xia, J., Zheng, Q.: New stability conditions for switched linear systems: a reverse-timer-dependent multiple discontinuous Lyapunov function approach. IEEE Trans. Syst. Man Cybern. Syst. pp. 1–12, (2020), https://doi.org/10.1109/TSMC.2019.2963142

  30. Mao, Y., Zhang, H.: Exponential stability and robust \(H_\infty \) control of a class of discrete-time switched non-linear systems with time-varying delays via T-S fuzzy model. Int. J. Syst. Sci. 45(5), 1112–1127 (2014). https://doi.org/10.1080/00207721.2012.745025

    Article  MathSciNet  MATH  Google Scholar 

  31. Zheng, Q., Zhang, H.: Asynchronous \(H_\infty \) fuzzy control for a class of switched nonlinear systems via switching fuzzy Lyapunov function approach. Neurocomputing 182, 178–186 (2016). https://doi.org/10.1016/j.neucom.2015.12.037

    Article  Google Scholar 

  32. Zheng, Q., Zhang, H., Zheng, D.: Stability and asynchronous stabilization for a class of discrete-time switched nonlinear systems with stable and unstable subsystems. Int. J. Control Autom. Syst. 15(3), 986–994 (2017). https://doi.org/10.1007/s12555-016-0301-6

    Article  MathSciNet  Google Scholar 

  33. Liberzon, D.: Switching in systems and control. Systems & control: foundations & applications. Birkhäuser, Boston (2003). https://doi.org/10.1007/978-1-4612-0017-8

    Book  MATH  Google Scholar 

  34. Zhang, L., Xiang, W.: Mode-identifying time estimation and switching-delay tolerant control for switched systems: An elementary time unit approach. Automatica 64, 174–181 (2016). https://doi.org/10.1016/j.automatica.2015.11.010

    Article  MathSciNet  MATH  Google Scholar 

  35. Xiang, Z., Wang, R.: Robust control for uncertain switched non-linear systems with time delay under asynchronous switching. IET Control Theory Appl. 3(8), 1041–1050 (2009). https://doi.org/10.1049/iet-cta.2008.0150

    Article  MathSciNet  Google Scholar 

  36. Tanaka, K., Hori, T., Wang, H.O.: A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Syst. 11(4), 582–589 (2003). https://doi.org/10.1109/TFUZZ.2003.814861

    Article  Google Scholar 

  37. Tanaka, K., Hori, T., Wang, H.: A fuzzy lyapunov approach to fuzzy control system design. In: Proceedings of American Control Conference, vol. 6, pp. 4790–4795 (2001). https://doi.org/10.1109/ACC.2001.945740

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No.6197 1100), the National Natural Science Foundation of China (Grant No. 61803001) and the Natural Science Foundation of Anhui Province (Grant No. 1808085QF194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, Y., Zheng, Q. et al. Non-weighted Asynchronous \(H_{\infty }\) Filtering for Continuous-Time Switched Fuzzy Systems. Int. J. Fuzzy Syst. 22, 1892–1904 (2020). https://doi.org/10.1007/s40815-020-00873-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00873-2

Keywords

Navigation