Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fuzzy Smooth Equilibrium Method for Clustering

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Clustering model plays an indispensable role in exploring data structures. To extend supervised learning to unsupervised, the maximum margin clustering model has been proposed. Maximum margin-based frameworks develop a powerful tool for supervised learning. It could yield good results by combining with some fuzzy clustering models. However, such methods characterized by high computational cost and are sensitive to the nearest neighbor relationships between data objects. Sometimes, they could lead to degenerate solutions. By reconstructing the Laplacian matrix with different similarity measurements, a new fuzzy smooth equilibrium clustering (FSEC) model is proposed. This model combines MMC with spectral clustering, but there is no need to solve the eigenvalue decomposition problem. Using the equilibrium regularization term can avoid degenerate solutions. Numerous experiments have established the effectiveness of the newly FSEC model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

  2. Ashby, F.G., Ennis, D.M.: Similarity measures. Scholarpedia 2(12), 4116 (2007)

    Article  Google Scholar 

  3. Alelyani, S., Tang, J., Liu, H.: Feature selection for clustering: a review. Data Clustering, pp. 29–60. (2018)

    Chapter  Google Scholar 

  4. Brualdi, R.A., Carmona, A., Driessche, P., Kirkland, S., Stevanovic, D.: Combinatorial Matrix Theory. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  5. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Adv. Appl. Pattern Recognit. 22(1171), 203–239 (1981)

    MATH  Google Scholar 

  6. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  8. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 551–556. ACM, New York (2004)

  9. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3, 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fahad, A., Alshatri, N., Tari, Z., et al.: A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput. 2(3), 267–279 (2014)

    Article  Google Scholar 

  11. Fan, H., Zheng, L., Yan, C., Yang, Y.: Unsupervised person re-identification: clustering and fine-tuning. ACM Trans. Multimed. Comput. Commun. Appl. 14(4), 83 (2018)

    Article  Google Scholar 

  12. Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for clustering. Pattern Recognit. 41, 176–190 (2008)

    Article  MATH  Google Scholar 

  13. Gharehchopogh, F.S., Jabbari, N., Azar, Z.G.: Evaluation of fuzzy k-means and k-means clustering algorithms in intrusion detection systems. Int. J. Sci. Technol. Res. 1(11), 66–72 (2012)

    Google Scholar 

  14. Guo, C., Zheng, S., Xie, Y., et al.: A survey on spectral clustering, World Automation Congress (WAC), pp. 53–56. IEEE, New York, (2012)

  15. Harrington, P.: Machine Learning in Action. Manning, Greenwich (2012)

    Google Scholar 

  16. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  17. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. 31, 651–666 (2010)

    Article  Google Scholar 

  18. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 7, 881–892 (2002)

    Article  MATH  Google Scholar 

  19. Khanmohammadi, S., Adibeig, N., Shanehbandy, S.: An improved overlapping k-means clustering method for medical applications. Expert Syst. Appl. 67, 12–18 (2017)

    Article  Google Scholar 

  20. Løkse, S., Bianchi, F.M., Salberg, A.B., Jenssen, R.: Spectral clustering using PCKID—a probabilistic cluster kernel for incomplete data. In: Scandinavian Conference on Image Analysis, pp. 431–442. (2017)

    Chapter  Google Scholar 

  21. Li, Y.F., Tsang, I.W., Kwok, J., Zhou, Z.H.: Tighter and convex maximum margin clustering. Artif. Intell. Stat. 5, 344–351 (2009)

    Google Scholar 

  22. Li, H.: Statistical Learning Methods. Tsinghua University Press, Beijing (2012)

    Google Scholar 

  23. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, no. 14, pp. 281–297. (1967)

  24. Migdady, H., Al-Talib, M.: An enhanced fuzzy K-means clustering with application to missing data imputation. Electron. J. Appl. Stat. Anal. 11(2), 674–686 (2018)

    MathSciNet  Google Scholar 

  25. Miyamoto, S.: Different objective functions in fuzzy c-means algorithms and kernel-based clustering. Int. J. Fuzzy Syst. 13(2), 89–97 (2011)

    MathSciNet  Google Scholar 

  26. Nguyen, D.T., Chen, L., Chan, C.K.: Clustering with multiviewpoint-based similarity measure. IEEE Trans. Knowl. Data Eng. 24, 988–1001 (2012)

    Article  Google Scholar 

  27. Nascimento, S.B., Mirkin, B., Moura-Pires, F.: A fuzzy clustering model of data and fuzzy c-means. In: The Ninth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 302–307. (2000)

  28. NCir, C.B., Cleuziou, G., Essoussi, N.: Overview of overlapping partitional clustering methods. In: Partitional Clustering Algorithms, pp. 245–275. Springer, Cham (2015)

  29. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856. (2002)

  30. Rokach, L., Oded, M.: Clustering methods. In: Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Boston (2005)

  31. Saxena, A., Prasad, M., Gupta, A., Bharill, N., et al.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)

    Article  Google Scholar 

  32. Shashua, A.: Introduction to machine learning: class notes 67577. arXiv preprint arXiv:0904.3664, (2009)

  33. Shai, S.S., Shai, B.D.: Understanding machine learning: from theory to algorithm. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  34. Shieh, H.L.: A hybrid fuzzy clustering method with a robust validity index. Int. J. Fuzzy Syst. 16(1), 39–45 (2014)

    MathSciNet  Google Scholar 

  35. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  36. Son, S., Nah, S., Mu Lee, K.: Clustering convolutional kernels to compress deep neural networks, In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 216–232. (2018)

    Chapter  Google Scholar 

  37. Son, L.H., Tien, N.D.: Tune up fuzzy C-means for big data: some novel hybrid clustering algorithms based on initial selection and incremental clustering. Int. J. Fuzzy Syst. 19(5), 1585–1602 (2017)

    Article  MathSciNet  Google Scholar 

  38. Son, L.H., Van Hai, P.: A novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Int. J. Fuzzy Syst. 18(5), 894–903 (2016)

    Article  MathSciNet  Google Scholar 

  39. Valafar, F.: Pattern recognition techniques in microarray data analysis. Ann. N. Y. Acad. Sci. 980(1), 41–64 (2002)

    Article  Google Scholar 

  40. Valizadegan, H., Jin, R.: Generalized maximum margin clustering and unsupervised kernel learning. In: Advances in Neural Information Processing Systems, pp. 1417–1424. (2007)

  41. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  42. Wang, Y.Y., Chen, S.C.: Soft large margin clustering. Inf. Sci. 232, 116–129 (2013)

    Article  MathSciNet  Google Scholar 

  43. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

  44. Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Advances in Neural Information Processing Systems, pp. 1537–1544. (2005)

  45. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)

    Article  Google Scholar 

  46. Xu, L., Schuurmans, D.: Unsupervised and semi-supervised multi-class support vector machines. In: Proceedings of the 20th National Conference on Artificial Intelligence. Pittsburgh, PA (2005)

  47. Zhang, L., Lu, W., Liu, X., Pedrycz, W., Zhong, C.: Fuzzy c-means clustering of incomplete data based on probabilistic information granules of missing values. Knowl. Based Syst. 99, 51–70 (2016)

    Article  Google Scholar 

  48. Zhao, B., Wang, F., Zhang, C.: Efficient maximum margin clustering via cutting plane algorithm. In: Proceedings of the 2008 SIAM International Conference on Data Mining, pp. 751–762. (2008)

  49. Zhang, A., Tsang, I.W., Kwok, J.T.: Maximum margin clustering made practical. IEEE Trans. Neural Netw. 20, 583–596 (2009)

    Article  Google Scholar 

  50. Zhou, G.T., Lan, T., Vahdat, A., Mori, G.: Latent maximum margin clustering. In: Advances in Neural Information Processing Systems, pp. 28–36. (2013)

  51. Zhu, X.F., Zhang, S., Li, Y., Zhang, J., Yang, L.: Low-rank sparse subspace for spectral clustering. In: IEEE Transactions on Knowledge and Data Engineering (2018)

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their comments that greatly improve the manuscript. The work is supported by the NSF of China (No. 11871447, 71991464), and the National Key Research and Development Program of MOST of China (No. 2018AAA0101001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouwang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yang, Z. Fuzzy Smooth Equilibrium Method for Clustering. Int. J. Fuzzy Syst. 22, 11–21 (2020). https://doi.org/10.1007/s40815-019-00787-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00787-8

Keywords

Navigation