Abstract
Clustering model plays an indispensable role in exploring data structures. To extend supervised learning to unsupervised, the maximum margin clustering model has been proposed. Maximum margin-based frameworks develop a powerful tool for supervised learning. It could yield good results by combining with some fuzzy clustering models. However, such methods characterized by high computational cost and are sensitive to the nearest neighbor relationships between data objects. Sometimes, they could lead to degenerate solutions. By reconstructing the Laplacian matrix with different similarity measurements, a new fuzzy smooth equilibrium clustering (FSEC) model is proposed. This model combines MMC with spectral clustering, but there is no need to solve the eigenvalue decomposition problem. Using the equilibrium regularization term can avoid degenerate solutions. Numerous experiments have established the effectiveness of the newly FSEC model.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)
Ashby, F.G., Ennis, D.M.: Similarity measures. Scholarpedia 2(12), 4116 (2007)
Alelyani, S., Tang, J., Liu, H.: Feature selection for clustering: a review. Data Clustering, pp. 29–60. (2018)
Brualdi, R.A., Carmona, A., Driessche, P., Kirkland, S., Stevanovic, D.: Combinatorial Matrix Theory. Cambridge University Press, Cambridge (1991)
Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Adv. Appl. Pattern Recognit. 22(1171), 203–239 (1981)
Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 551–556. ACM, New York (2004)
Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3, 32–57 (1973)
Fahad, A., Alshatri, N., Tari, Z., et al.: A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput. 2(3), 267–279 (2014)
Fan, H., Zheng, L., Yan, C., Yang, Y.: Unsupervised person re-identification: clustering and fine-tuning. ACM Trans. Multimed. Comput. Commun. Appl. 14(4), 83 (2018)
Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for clustering. Pattern Recognit. 41, 176–190 (2008)
Gharehchopogh, F.S., Jabbari, N., Azar, Z.G.: Evaluation of fuzzy k-means and k-means clustering algorithms in intrusion detection systems. Int. J. Sci. Technol. Res. 1(11), 66–72 (2012)
Guo, C., Zheng, S., Xie, Y., et al.: A survey on spectral clustering, World Automation Congress (WAC), pp. 53–56. IEEE, New York, (2012)
Harrington, P.: Machine Learning in Action. Manning, Greenwich (2012)
Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier, Amsterdam (2011)
Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. 31, 651–666 (2010)
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 7, 881–892 (2002)
Khanmohammadi, S., Adibeig, N., Shanehbandy, S.: An improved overlapping k-means clustering method for medical applications. Expert Syst. Appl. 67, 12–18 (2017)
Løkse, S., Bianchi, F.M., Salberg, A.B., Jenssen, R.: Spectral clustering using PCKID—a probabilistic cluster kernel for incomplete data. In: Scandinavian Conference on Image Analysis, pp. 431–442. (2017)
Li, Y.F., Tsang, I.W., Kwok, J., Zhou, Z.H.: Tighter and convex maximum margin clustering. Artif. Intell. Stat. 5, 344–351 (2009)
Li, H.: Statistical Learning Methods. Tsinghua University Press, Beijing (2012)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, no. 14, pp. 281–297. (1967)
Migdady, H., Al-Talib, M.: An enhanced fuzzy K-means clustering with application to missing data imputation. Electron. J. Appl. Stat. Anal. 11(2), 674–686 (2018)
Miyamoto, S.: Different objective functions in fuzzy c-means algorithms and kernel-based clustering. Int. J. Fuzzy Syst. 13(2), 89–97 (2011)
Nguyen, D.T., Chen, L., Chan, C.K.: Clustering with multiviewpoint-based similarity measure. IEEE Trans. Knowl. Data Eng. 24, 988–1001 (2012)
Nascimento, S.B., Mirkin, B., Moura-Pires, F.: A fuzzy clustering model of data and fuzzy c-means. In: The Ninth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 302–307. (2000)
NCir, C.B., Cleuziou, G., Essoussi, N.: Overview of overlapping partitional clustering methods. In: Partitional Clustering Algorithms, pp. 245–275. Springer, Cham (2015)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856. (2002)
Rokach, L., Oded, M.: Clustering methods. In: Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Boston (2005)
Saxena, A., Prasad, M., Gupta, A., Bharill, N., et al.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)
Shashua, A.: Introduction to machine learning: class notes 67577. arXiv preprint arXiv:0904.3664, (2009)
Shai, S.S., Shai, B.D.: Understanding machine learning: from theory to algorithm. Cambridge University Press, Cambridge (2014)
Shieh, H.L.: A hybrid fuzzy clustering method with a robust validity index. Int. J. Fuzzy Syst. 16(1), 39–45 (2014)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)
Son, S., Nah, S., Mu Lee, K.: Clustering convolutional kernels to compress deep neural networks, In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 216–232. (2018)
Son, L.H., Tien, N.D.: Tune up fuzzy C-means for big data: some novel hybrid clustering algorithms based on initial selection and incremental clustering. Int. J. Fuzzy Syst. 19(5), 1585–1602 (2017)
Son, L.H., Van Hai, P.: A novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Int. J. Fuzzy Syst. 18(5), 894–903 (2016)
Valafar, F.: Pattern recognition techniques in microarray data analysis. Ann. N. Y. Acad. Sci. 980(1), 41–64 (2002)
Valizadegan, H., Jin, R.: Generalized maximum margin clustering and unsupervised kernel learning. In: Advances in Neural Information Processing Systems, pp. 1417–1424. (2007)
Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)
Wang, Y.Y., Chen, S.C.: Soft large margin clustering. Inf. Sci. 232, 116–129 (2013)
Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)
Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Advances in Neural Information Processing Systems, pp. 1537–1544. (2005)
Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)
Xu, L., Schuurmans, D.: Unsupervised and semi-supervised multi-class support vector machines. In: Proceedings of the 20th National Conference on Artificial Intelligence. Pittsburgh, PA (2005)
Zhang, L., Lu, W., Liu, X., Pedrycz, W., Zhong, C.: Fuzzy c-means clustering of incomplete data based on probabilistic information granules of missing values. Knowl. Based Syst. 99, 51–70 (2016)
Zhao, B., Wang, F., Zhang, C.: Efficient maximum margin clustering via cutting plane algorithm. In: Proceedings of the 2008 SIAM International Conference on Data Mining, pp. 751–762. (2008)
Zhang, A., Tsang, I.W., Kwok, J.T.: Maximum margin clustering made practical. IEEE Trans. Neural Netw. 20, 583–596 (2009)
Zhou, G.T., Lan, T., Vahdat, A., Mori, G.: Latent maximum margin clustering. In: Advances in Neural Information Processing Systems, pp. 28–36. (2013)
Zhu, X.F., Zhang, S., Li, Y., Zhang, J., Yang, L.: Low-rank sparse subspace for spectral clustering. In: IEEE Transactions on Knowledge and Data Engineering (2018)
Acknowledgements
We would like to thank the anonymous reviewers for their comments that greatly improve the manuscript. The work is supported by the NSF of China (No. 11871447, 71991464), and the National Key Research and Development Program of MOST of China (No. 2018AAA0101001).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, J., Yang, Z. Fuzzy Smooth Equilibrium Method for Clustering. Int. J. Fuzzy Syst. 22, 11–21 (2020). https://doi.org/10.1007/s40815-019-00787-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-019-00787-8