Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Hybrid Fuzzy Cognitive Map/Support Vector Machine Approach for EEG-Based Emotion Classification Using Compressed Sensing

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Due to the high dimensional, non-stationary and non-linear properties of electroencephalogram (EEG), a significant portion of research on EEG analysis remains unknown. In this paper, a novel approach to EEG-based human emotion study is presented using Big Data methods with a hybrid classifier. An EEG dataset is firstly compressed using compressed sensing, then, wavelet transform features are extracted, and a hybrid Support Vector Machine (SVM) and Fuzzy Cognitive Map classifier is designed. The compressed data is only one-fourth of the original size, and the hybrid classifier has the average accuracy by 73.32%. Comparing to a single SVM classifier, the average accuracy is improved by 3.23%. These outcomes show that psychological signal can be compressed without the sparsity identity. The stable and high accuracy classification system demonstrates that EEG signal can detect human emotion, and the findings further prove the existence of the inter-relationship between various regions of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nwe, T. L., Wei, F. S., De Silva L. C.: Speech based emotion classification. In: TENCON 2001. Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology, (2001), vol. 1, pp. 297–301. IEEE

  2. Padgett, C., Cottrell, G. W.: Representing face images for emotion classification, in Advances in neural information processing systems, (1997), pp. 894–900

  3. Lien, J.J.-J., Kanade, T., Cohn, J.F., Li, C.-C.: Detection, tracking, and classification of action units in facial expression. Robot. Auton. Syst. 31(3), 131–146 (2000)

    Article  Google Scholar 

  4. Hu, T., De Silva, L.C., Sengupta, K.: A hybrid approach of NN and HMM for facial emotion classification. Pattern Recognit. Lett. 23(11), 1303–1310 (2002)

    Article  MATH  Google Scholar 

  5. Baltruaitis et al, T.: Real-time inference of mental states from facial expressions and upper body gestures. In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), (2011), pp. 909–914. IEEE

  6. Gunes, H., Piccardi, M.: Bi-modal emotion recognition from expressive face and body gestures. J. Netw. Comput. Appl. 30(4), 1334–1345 (2007)

    Article  Google Scholar 

  7. Agrafioti, F., Hatzinakos, D., Anderson, A.K.: ECG pattern analysis for emotion detection. IEEE Trans. Affect. Comput. 3(1), 102–115 (2012)

    Article  Google Scholar 

  8. Ahern, G.L., Schwartz, G.E.: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis. Neuropsychologia 23(6), 745–755 (1985)

    Article  Google Scholar 

  9. Li, M., Lu, B.-L.: Emotion classification based on gamma-band EEG. In: Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, 2009. EMBC, (2009), pp. 1223–1226. IEEE

  10. Lin, Y.-P.: EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57(7), 1798–1806 (2010)

    Article  Google Scholar 

  11. Murugappan, M., Ramachandran, N., Sazali, Y.: Classification of human emotion from EEG using discrete wavelet transform. J. Biomed. Sci. Eng. 3(04), 390 (2010)

    Article  Google Scholar 

  12. Wang, X.-W., Nie, D., Lu, B.-L.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129, 94–106 (2014)

    Article  Google Scholar 

  13. Liu, Y., Sourina, O., Nguyen, M. K.: Real-time EEG-based human emotion recognition and visualization. In: 2010 International Conference on Cyberworlds (CW), (2010), pp. 262–269. IEEE

  14. Yuan, Q., Zhou, W., Yuan, S., Li, X., Wang, J., Jia, G.: Epileptic EEG classification based on kernel sparse representation. Int. J. Neural Syst. 24(04), 1450015 (2014)

    Article  Google Scholar 

  15. Aviyente, S.: Compressed sensing framework for EEG compression. In: IEEE/SP 14th Workshop on Statistical Signal Processing, 2007. SSP’07, (2007), pp. 181–184. IEEE

  16. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  17. Zhang, Z., Jung, T.-P., Makeig, S., Rao, B.D.: Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware. IEEE Trans. Biomed. Eng. 60(1), 221–224 (2013)

    Article  Google Scholar 

  18. Islam, M., Ahmed, T., Mostafa, S. S., Yusuf, M. S. U., Ahmad, M., Human emotion recognition using frequency & statistical measures of EEG signal. In: 2013 International Conference on Informatics, Electronics & Vision (ICIEV), (2013), pp. 1–6. IEEE

  19. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 14(2), 186–197 (2010)

    Article  Google Scholar 

  20. Yuankui, Y., Jianzhong, Z.: Recognition and analyses of EEG & ERP signals related to emotion: from the perspective of psychology. In: 2005 First International Conference on Neural Interface and Control, Proceedings 2005, (2005), pp. 96–99. IEEE

  21. Duan, R.-N., Zhu, J.-Y., Lu, B.-L.: Differential entropy feature for EEG-based emotion classification. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), (2013), pp. 81–84. IEEE

  22. Ravindran, R. M.: Classification of human emotions from EEG signals using filtering and ANFIS classifier. In: 2014 2nd International Conference on Current Trends in Engineering and Technology (ICCTET), (2014), pp. 113–119. IEEE

  23. Candra et al, H.: Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2015), pp. 7250–7253. IEEE

  24. Bhardwaj, A., Gupta, A., Jain, P., Rani, A., Yadav, J.: Classification of human emotions from EEG signals using SVM and LDA Classifiers. In: 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), (2015), pp. 180–185. IEEE

  25. Bos, D.O.: EEG-based emotion recognition. Influ. Vis. Audit. Stimul. 56(3), 1–17 (2006)

    Google Scholar 

  26. Torres-Valencia, C. A., Garcia-Arias, H. F., Lopez, M. A. A., Orozco-Gutirrez, A. A.: Comparative analysis of physiological signals and electroencephalogram (eeg) for multimodal emotion recognition using generative models. In: 2014 XIX Symposium on Image, Signal Processing and Artificial Vision (STSIVA), (2014), pp. 1–5. IEEE

  27. Zhengm W.-L., Dong, B.-N., Lu, B.-L.: Multimodal emotion recognition using EEG and eye tracking data. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2014), pp. 5040–5043. IEEE

  28. Jirayucharoensak, S., Pan-Ngum, S., Israsena, P.: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. (2014)

  29. Chai, T.Y., Woo, S.S., Rizon, M., Tan, C.S.: Classification of human emotions from EEG signals using statistical features and neural network. In: International, vol. 1, pp. 1–6. Penerbit UTHM (2010)

  30. Valstar, M., Pantic, M.: Combined support vector machines and hidden markov models for modeling facial action temporal dynamics, HumanComputer Interaction, pp. 118–127, (2007)

  31. Chen, G., Pham, T.T.: Introduction to Fuzzy Systems. CRC Press, Boca Raton (2005)

    Book  MATH  Google Scholar 

  32. Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, I., Hazry, D.: EEG feature extraction for classifying emotions using FCM and FKM. Int. J. Comput. Commun. 1(2), 21–25 (2007)

    Google Scholar 

  33. Glykas, M.: Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools and Applications. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  34. Kosko, B.: Fuzzy cognitive maps. Int. J. ManMach. Stud. 24(1), 65–75 (1986)

    Article  MATH  Google Scholar 

  35. van Vliet, M., Kok, K., Veldkamp, T.: Linking stakeholders and modellers in scenario studies: the use of fuzzy cognitive maps as a communication and learning tool. Futures 42(1), 1–14 (2010)

    Article  Google Scholar 

  36. Papageorgiou, E.I., Salmeron, J.L.: A review of fuzzy cognitive map research during the last decade. IEEE Trans. Fuzzy Syst. 99, 1–14 (2011)

    Google Scholar 

  37. Salmeron, J.L.: Fuzzy cognitive maps for artificial emotions forecasting. Appl. Soft Comput. 12(12), 3704–3710 (2012)

    Article  Google Scholar 

  38. Koelstra, S.: Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kairui Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Chai, R., Candra, H. et al. A Hybrid Fuzzy Cognitive Map/Support Vector Machine Approach for EEG-Based Emotion Classification Using Compressed Sensing. Int. J. Fuzzy Syst. 21, 263–273 (2019). https://doi.org/10.1007/s40815-018-0567-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0567-3

Keywords

Navigation