Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Asynchronous Decentralized Fuzzy Observer-Based Output Feedback Control of Nonlinear Large-Scale Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of decentralized robust \({{\mathscr {H}}}_{\infty }\) output feedback control for a class of continuous-time nonlinear large-scale systems based on T–S fuzzy affine models. Based on a common quadratic Lyapunov function and piecewise quadratic Lyapunov functions, some new results are proposed to the asynchronous observer-based controller synthesis for T–S fuzzy affine large-scale systems with unmeasurable premise variables. The observer and controller gains can be attained through solving a set of linear matrix inequalities. Finally, two simulation examples are presented to verify the effectiveness of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bakule, L.: Decentralized control: an overview. Annu. Rev. Control 32(1), 87–98 (2008)

    Article  MathSciNet  Google Scholar 

  2. Han, S.I., Ha, H., Lee, J.M.: Fuzzy finite-time dynamic surface control for nonlinear large-scale systems. Int. J. Fuzzy Syst. 18(4), 570–584 (2016)

    Article  MathSciNet  Google Scholar 

  3. Zhao, J., Lin, C.-M., Huang, J.: Decentralized \({\mathscr {H}}_{\infty }\) sampled-data control for continuous-time large-scale networked nonlinear systems. Int. J. Fuzzy Syst. 19(2), 504–515 (2017)

    Article  MathSciNet  Google Scholar 

  4. Fan, T., Chen, C.: Robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties. Complexity 19(3), 610–626 (2014)

    MathSciNet  Google Scholar 

  5. Kim, H.J., Koo, G.B., Park, J.B., Joo, Y.H.: Decentralized sampled-data \({\mathscr {H}}_{\infty }\) fuzzy filter for nonlinear large-scale systems. Fuzzy Sets Syst. 273(15), 68–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, S., Rees, N.W., Feng, G.: Analysis and design for a class of complex control systems-part II: fuzzy controller design. Automatica 33(6), 1029–1039 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    Article  Google Scholar 

  8. Qiu, J., Feng, G., Gao, H.: Asynchronous output-feedback control of networked nonlinear systems with multiple packet dropouts: T–S fuzzy affine model-based approach. IEEE Trans. Fuzzy Syst. 19(6), 1014–1030 (2011)

    Article  Google Scholar 

  9. Li, H., Yu, J., Hilton, C., Liu, H.: Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach. IEEE Trans. Ind. Electron. 60(8), 3328–3338 (2013)

    Article  Google Scholar 

  10. Li, H., Wang, J., Shi, P.: Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Trans. Fuzzy Syst. 24(6), 1282–1293 (2016)

    Article  Google Scholar 

  11. Lam, H.K., Seneviratne, L.D.: Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(3), 617–628 (2008)

    Article  Google Scholar 

  12. Chadli, M., Guerra, T.M.: LMI solution for robust static output feedback control of discrete Takagi–Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 21(2), 1160–1165 (2012)

    Article  Google Scholar 

  13. Qiu, J., Feng, G., Gao, H.: Static-output-feedback \({\mathscr {H}}_{\infty }\) control of continuous-time T–S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21(2), 245–261 (2013)

    Article  Google Scholar 

  14. Johansson, M., Rantzer, A., Arzen, K.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst. 7(6), 713–722 (1999)

    Article  Google Scholar 

  15. Hsueh, Y.-C., Su, S.-F.: Learning error feedback design of direct adaptive fuzzy control systems. IEEE Trans. Fuzzy Syst. 20(3), 536–545 (2012)

    Article  Google Scholar 

  16. Choi, H.D., Ahn, C.K., Shi, P., Wu, L., Lim, M.T.: Dynamic output-feedback dissipative control for T–S fuzzy systems with time-varying input delay and output constraints. IEEE Trans. Fuzzy Syst. 25(3), 511–526 (2017)

    Article  Google Scholar 

  17. Su, S.-F., Chen, M.-C., Hsueh, Y.-C.: A novel fuzzy modeling structure-decomposed fuzzy system. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2311–2317 (2017)

    Article  Google Scholar 

  18. Wang, N., Su, S.-F., Yin, J., Zheng, Z., Er, M.J.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. 26(3), 1613–1625 (2018)

    Article  Google Scholar 

  19. Lam, H.K.: A review on stability analysis of continuous-time fuzzy-model-based control systems: from membership-function-independent to membership-function-dependent analysis. Eng. Appl. Artif. Intell. 67, 390–408 (2018)

    Article  Google Scholar 

  20. Zheng, Q., Zhang, H.: Asynchronous \({\mathscr {H}}_{\infty }\) fuzzy control for a class of switched nonlinear systems via switching fuzzy Lyapunov function approach. Neurocomputing 182, 178–186 (2016)

    Article  Google Scholar 

  21. Zheng, Q., Zhang, H.: \({\mathscr {H}}_{\infty }\) filtering for a class of nonlinear switched systems with stable and unstable subsystems. Signal Process. 141, 240–248 (2017)

    Article  Google Scholar 

  22. Tong, M., Pan, Y., Li, Z., Lin, W.: Valid data based normalized cross-correlation (VDNCC) for topography identification. Neurocomputing. https://doi.org/10.1016/j.neucom.2018.04.059

  23. Zhou, Q., Li, H., Wu, C., Wang, L., Ahn, C.K.: Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1979–1989 (2017)

    Article  Google Scholar 

  24. Wang, Y., Xia, Y., Ahn, C.K., Zhu, Y.: Exponential stabilization of Takagi–Sugeno fuzzy systems with aperiodic sampling: an aperiodic adaptive event-triggered method. IEEE Trans. Syst. Man Cybern. Syst. https://doi.org/10.1109/TSMC.2018.2834967

  25. Sakthivel, R., Ahn, C.K., Joby, M.: Fault-tolerant resilient control for fuzzy fractional order systems. IEEE Trans. Syst. Man Cybern. Syst. https://doi.org/10.1109/TSMC.2018.2835442

  26. Xie, X., Yue, D., Zhang, H., Peng, C.: Control synthesis of discrete-time T–S fuzzy systems: reducing the conservatism whilst alleviating the computational burden. IEEE Trans. Cybern. 47(9), 2480–2491 (2017)

    Article  Google Scholar 

  27. Xie, X., Yue, D., Zhang, H., Xue, Y.: Fault estimation observer design for discrete-time Takagi–Sugeno fuzzy systems based on homogenous polynomially parameter-dependent Lyapunov functions. IEEE Trans. Cybern. 47(9), 2504–2513 (2017)

    Article  Google Scholar 

  28. Qiu, J., Gao, H., Ding, S.X.: Recent advances on fuzzy-model-based nonlinear networked control systems: a survey. IEEE Trans. Ind. Electron. 63(2), 1207–1217 (2016)

    Article  Google Scholar 

  29. Hsiao, F.-H., Hwang, J.-D.: Stability analysis of fuzzy large-scale systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 32(1), 122–126 (2001)

    Article  Google Scholar 

  30. Wang, W., Luoh, L.: Stability and stabilization of fuzzy large-scale systems. IEEE Trans. Fuzzy Syst. 12(3), 309–315 (2004)

    Article  MATH  Google Scholar 

  31. Wang, W.-J., Lin, W.-W.: Decentralized PDC for large-scale T–S fuzzy systems. IEEE Trans. Fuzzy Syst. 13(6), 779–786 (2005)

    Article  Google Scholar 

  32. Zhang, H., Feng, G.: Stability analysis and \({\mathscr {H}}_{\infty }\) controller design of discrete-time fuzzy large-scale systems based on piecewise Lyapunov functions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(5), 1390–1401 (2008)

    Article  Google Scholar 

  33. Zhang, H., Li, C., Liao, X.: Stability analysis and \({\mathscr {H}}_{\infty }\) controller design of fuzzy large-scale systems based on piecewise Lyapunov functions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(3), 685–698 (2006)

    Article  Google Scholar 

  34. Tseng, C.-S.: A novel approach to \({\mathscr {H}}_{\infty }\) decentralized fuzzy-observer-based fuzzy control design for nonlinear interconnected systems. IEEE Trans. Fuzzy Syst. 16(5), 1337–1350 (2008)

    Article  Google Scholar 

  35. Koo, G., Park, J., Joo, Y.: Decentralized fuzzy observer-based output-feedback control for nonlinear large-scale systems: an LMI approach. IEEE Trans. Fuzzy Syst. 22(2), 406–419 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Qiu.

Additional information

This work was supported in part by the Self-Planned Task of State Key Laboratory of Robotics and Systems of Harbin Institute of Technology (No. SKLRS201801A03), the National Natural Science Foundation of China (No. 61873311), and the 111 Project (B16014).

Appendix

Appendix

Lemma 1

[33] For real matricesSandMwith appropriate dimensions, the following inequality

$$\begin{aligned} S^{{\mathrm {T}}}M+M^{{\mathrm {T}}}S\le \varepsilon S^{{\mathrm {T}}}S+\varepsilon ^{-1} M^{{\mathrm {T}}}M \end{aligned}$$

holds for a parameter\(\varepsilon >0\).

Lemma 2

(Tchebyshev’s inequality) For arbitrary vectors\(x_{l}\in {\mathfrak {R}}^{n}\), \(l=1,2,\ldots , N\), the following inequality holds

$$\begin{aligned} \left[ \sum\limits_{l=1}^{N}x_{l}\right] ^{{\mathrm {T}}}\left[ \sum\limits_{l=1}^{N}x_{l}\right] \le N\sum\limits_{l=1}^{N}x^{{\mathrm {T}}}_{l}x_{l}. \end{aligned}$$

Lemma 3

(Projection lemma) [13] Given matrices\({{{\mathcal {W}}}}={{\mathcal {W}}}^{{\mathrm {T}}}\in {\mathfrak {R}}^{n \times n}\), \({{{\mathcal {V}}}}\in {\mathfrak {R}}^{m \times n}\), \({{{\mathcal {U}}}}\in {\mathfrak {R}}^{s \times n}\), the following LMI inequality

$$\begin{aligned} {{{\mathcal {W}}}}+{{{\mathcal {U}}}}^{{\mathrm {T}}} {{{\mathcal {X}}}}^{{\mathrm {T}}} {{{\mathcal {V}}}}+{{{\mathcal {V}}}}^{{\mathrm {T}}}{{{\mathcal {X}}}} {{{\mathcal {U}}}}<0, \end{aligned}$$

is solvable for the variable\({{{\mathcal {X}}}}\)if and only if

$$\begin{aligned} \left\{ \begin{array}{ll} {{{\mathcal {U}}}}^{{\mathrm {T}}}_{\bot }{{{\mathcal {W}}}}{{{\mathcal {U}}}}_{\bot }<0,&\quad \text{ if }\ {{{\mathcal {V}}}}_{\bot }={\mathbf{0 }}, {{{\mathcal {U}}}}_{\bot }\ne {\mathbf{0 }},\\ {{{\mathcal {V}}}}^{{\mathrm {T}}}_{\bot }{{{\mathcal {W}}}}{{{\mathcal {V}}}}_{\bot }<0,&\quad \text{ if }\ {{{\mathcal {U}}}}_{\bot }={\mathbf{0 }}, {{{\mathcal {V}}}}_{\bot }\ne {\mathbf{0 }},\\ {{{\mathcal {U}}}}^{{\mathrm {T}}}_{\bot }{{{\mathcal {W}}}}{{{\mathcal {U}}}}_{\bot }<0,\quad {{{\mathcal {V}}}}^{{\mathrm {T}}}_{\bot }{{{\mathcal {W}}}}{{{\mathcal {V}}}}_{\bot }<0,&\quad \text{ if }\ {{{\mathcal {V}}}}_{\bot }\ne {\mathbf{0 }}, {{{\mathcal {U}}}}_{\bot }\ne {\mathbf{0 }},\\ \end{array}\right. \end{aligned}$$

where\({{{\mathcal {V}}}}_{\bot }\)and\({{{\mathcal {U}}}}_{\bot }\)stand forthe right null spaces of\({{{\mathcal {V}}}}\)and\({{{\mathcal {U}}}}\), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, W., Fu, S., Chen, H. et al. Asynchronous Decentralized Fuzzy Observer-Based Output Feedback Control of Nonlinear Large-Scale Systems. Int. J. Fuzzy Syst. 21, 19–32 (2019). https://doi.org/10.1007/s40815-018-0565-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0565-5

Keywords

Navigation