Abstract
Concerned with descriptor systems, this paper extends recent results on nonquadratic controller design. The proposal employs an exact Takagi–Sugeno model of the descriptor redundancy form and a fully nonquadratic Lyapunov function. Based on these elements, a switching control law is proposed that achieves stabilization up to the modelling area by feeding back the time derivatives of the membership functions: these are obtained from a Levant’s robust differentiator. Conditions thus obtained turned up to be linear matrix inequalities. Via suitable examples, the methodology is shown to outperform previous approaches on the subject.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
It will be assumed that \(\text{rank}\begin{bmatrix} E_v&B_h\end{bmatrix}=2n-\text{rank}(\bar{E})\) \(\forall x\in {\mathbb {R}}^n\); this condition reduces to impulse controllability in the linear case [25].
The differential index is the minimum number of differentiation steps required to transform a DAE system into an ordinary differential equation (ODE). If the differential index is 0, then the matrix E(x) is invertible and an ODE system can be directly obtained; if the differential index is 1, then by simple substitution the descriptor system is transformed into an ODE one. For indexes greater than 1, the Pantelides algorithm must be performed; it is already implemented in the Symbolic Math Toolbox of MATLAB [27, 29].
References
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)
Tanaka, K., Wang, H.: Fuzzy Control Systems Design and Analysis. A Linear Matrix Inequality Approach. Wiley, New York (2001)
Wang, H., Tanaka, K., Griffin, M.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)
Scherer, C.: Linear Matrix Inequalities in Control Theory. Delf University, Delf (2004)
Taniguchi, T., Tanaka, K., Wang, H.: Model construction, rule reduction and robust compensation for generalized form of Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 9(2), 525–537 (2001)
Guerra, T.M., Tanaka, K., Sala, A.: Fuzzy control turns 50: 10 years later. Fuzzy Sets Syst. 281, 168–182 (2015)
Kchaou, M.: Robust h_\(\backslash\) infty observer-based control for a class of (ts) fuzzy descriptor systems with time-varying delay. Int. J. Fuzzy Syst. 19(3), 909–924 (2017)
Brahim, I., Chaabane, M., Mehdi, D.: Fault-tolerant control for T–S Fuzzy descriptor systems with sensor faults: an LMI approach. Int. J. Fuzzy Syst. 19(2), 516–527 (2017)
Taniguchi, T., Tanaka, K., Yamafuji, K., Wang, H.:Fuzzy descriptor systems: stability analysis and design via LMIs. In: Proceedings of the 1999 American Control Conference, vol. 3, pp. 1827–1831 (1999)
Luenberger, D.: Dynamic equations in descriptor form. IEEE Trans. Autom. Control 22(3), 312–321 (1977)
Guerra, T. M., Bernal, M., Kruszewski, A., Afroun, M.: A way to improve results for the stabilization of continuous-time fuzzy descriptor models. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 5960–5964 (2007)
Estrada-Manzo, V., Guerra, T. M., Lendek, Z., Bernal, M.: Improvements on non-quadratic stabilization of continuous-time Takagi–Sugeno descriptor models. In: Proceedings of the 2013 IEEE Conference on Fuzzy Systems, Hyderabad, India, pp. 1–6 (2013)
Márquez, R., Guerra, T. M., Bernal, M., Kruszewski, A.: Eliminating the parameter-dependence of recent LMI results on controller design of descriptor systems. In: Proceedings of the 2015 IEEE Conference on Fuzzy Systems, Istanbul, Turkey, pp. 1–6 (2015)
Guerra, T.M., Estrada-Manzo, V., Lendek, Z.S.: Observer design of nonlinear descriptor systems. Automatica 52, 154–159 (2015)
Tanaka, K., Hori, T., Wang, H.: A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Syst. 11(4), 582–589 (2003)
González, T., Márquez, R., Bernal, M., Guerra, T.M.: Nonquadratic controller and observer design for continuous TS models: a discrete-inspired solution. Int. J. Fuzzy Syst. 18(1), 1–14 (2016)
Pan, J., Guerra, T., Fei, S., Jaadari, A.: Nonquadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach. IEEE Trans. Fuzzy Syst. 20(3), 594–602 (2012)
Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)
González, T., Bernal, M., Sala, A., Aguiar, B.: Cancellation-based nonquadratic controller design for nonlinear systems via Takagi–Sugeno models. IEEE Trans. Cybern. 47(9), 2628–2638 (2017)
Boyd, S., Ghaoui, L.E., Feron, E., Belakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, vol. 15. SIAM: Studies In Applied Mathematics, Philadelphia (1994)
Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. Math Works, Natick (1995)
Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)
Peaucelle, D., Arzelier, D., Bachelier, O., Bernussou, J.: A new robust D-stability condition for real convex polytopic uncertainty. Syst. Control Lett. 40(1), 21–30 (2000)
Tuan, H., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)
Duan, G.R.: Anal. Des. Descr. Linear Syst. Springer-Verlag, New York (2010)
Xie, X., Yue, D., Ma, T., Zhu, X.: Further studies on control synthesis of discrete-time TS fuzzy systems via augmented multi-indexed matrix approach. IEEE Trans. Cybern. 44(12), 2784–2791 (2014)
Gear, C.W.: Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput. 9(1), 39–47 (1988)
Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat. Comput. 9(2), 213–231 (1988)
Kumar, A., Daoutidis, P.: Control of nonlinear differential algebraic equation systems: an overview. In: Nonlinear Model Based Process Control. Springer, pp. 311–344 (1998)
Lofberg, J.: YALMIP : a toolbox for modeling and optimization in matlab. In: 2004 IEEE International Symposium on Computer Aided Control Systems Design, vol. 2004, pp. 284–289
Márquez, R.: New control and observation schemes based on Takagi-Sugeno models. Ph.D. dissertation, Université de Valenciennes et du Hainaut Cambrésis (2015)
Taniguchi, T., Tanaka, K., Wang, H.O.: Fuzzy descriptor systems and nonlinear model following control. IEEE Trans. Fuzzy Syst. 8(4), 442–452 (2000)
Reißig, G.: Differential-algebraic equations and impasse points. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(2), 122–133 (1996)
Acknowledgements
This work has been supported by the CONACYT scholarship 583472, the postdoctoral fellowship for CVU 366627, the PROFAPI Projects 2016-0081 and 2016-0091, and the ITSON PFCE 2016-17.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Arceo, J.C., Márquez, R., Estrada-Manzo, V. et al. Stabilization of Nonlinear Singular Systems via Takagi–Sugeno Models and Robust Differentiators. Int. J. Fuzzy Syst. 20, 1451–1459 (2018). https://doi.org/10.1007/s40815-018-0463-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-018-0463-x