Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Stabilization of Nonlinear Singular Systems via Takagi–Sugeno Models and Robust Differentiators

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Concerned with descriptor systems, this paper extends recent results on nonquadratic controller design. The proposal employs an exact Takagi–Sugeno model of the descriptor redundancy form and a fully nonquadratic Lyapunov function. Based on these elements, a switching control law is proposed that achieves stabilization up to the modelling area by feeding back the time derivatives of the membership functions: these are obtained from a Levant’s robust differentiator. Conditions thus obtained turned up to be linear matrix inequalities. Via suitable examples, the methodology is shown to outperform previous approaches on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. It will be assumed that \(\text{rank}\begin{bmatrix} E_v&B_h\end{bmatrix}=2n-\text{rank}(\bar{E})\) \(\forall x\in {\mathbb {R}}^n\); this condition reduces to impulse controllability in the linear case [25].

  2. The differential index is the minimum number of differentiation steps required to transform a DAE system into an ordinary differential equation (ODE). If the differential index is 0, then the matrix E(x) is invertible and an ODE system can be directly obtained; if the differential index is 1, then by simple substitution the descriptor system is transformed into an ODE one. For indexes greater than 1, the Pantelides algorithm must be performed; it is already implemented in the Symbolic Math Toolbox of MATLAB [27, 29].

References

  1. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  2. Tanaka, K., Wang, H.: Fuzzy Control Systems Design and Analysis. A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Google Scholar 

  3. Wang, H., Tanaka, K., Griffin, M.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)

    Article  Google Scholar 

  4. Scherer, C.: Linear Matrix Inequalities in Control Theory. Delf University, Delf (2004)

    Google Scholar 

  5. Taniguchi, T., Tanaka, K., Wang, H.: Model construction, rule reduction and robust compensation for generalized form of Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 9(2), 525–537 (2001)

    Article  Google Scholar 

  6. Guerra, T.M., Tanaka, K., Sala, A.: Fuzzy control turns 50: 10 years later. Fuzzy Sets Syst. 281, 168–182 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kchaou, M.: Robust h_\(\backslash\) infty observer-based control for a class of (ts) fuzzy descriptor systems with time-varying delay. Int. J. Fuzzy Syst. 19(3), 909–924 (2017)

    Article  MathSciNet  Google Scholar 

  8. Brahim, I., Chaabane, M., Mehdi, D.: Fault-tolerant control for T–S Fuzzy descriptor systems with sensor faults: an LMI approach. Int. J. Fuzzy Syst. 19(2), 516–527 (2017)

    Article  MathSciNet  Google Scholar 

  9. Taniguchi, T., Tanaka, K., Yamafuji, K., Wang, H.:Fuzzy descriptor systems: stability analysis and design via LMIs. In: Proceedings of the 1999 American Control Conference, vol. 3, pp. 1827–1831 (1999)

  10. Luenberger, D.: Dynamic equations in descriptor form. IEEE Trans. Autom. Control 22(3), 312–321 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guerra, T. M., Bernal, M., Kruszewski, A., Afroun, M.: A way to improve results for the stabilization of continuous-time fuzzy descriptor models. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 5960–5964 (2007)

  12. Estrada-Manzo, V., Guerra, T. M., Lendek, Z., Bernal, M.: Improvements on non-quadratic stabilization of continuous-time Takagi–Sugeno descriptor models. In: Proceedings of the 2013 IEEE Conference on Fuzzy Systems, Hyderabad, India, pp. 1–6 (2013)

  13. Márquez, R., Guerra, T. M., Bernal, M., Kruszewski, A.: Eliminating the parameter-dependence of recent LMI results on controller design of descriptor systems. In: Proceedings of the 2015 IEEE Conference on Fuzzy Systems, Istanbul, Turkey, pp. 1–6 (2015)

  14. Guerra, T.M., Estrada-Manzo, V., Lendek, Z.S.: Observer design of nonlinear descriptor systems. Automatica 52, 154–159 (2015)

    Article  MATH  Google Scholar 

  15. Tanaka, K., Hori, T., Wang, H.: A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Syst. 11(4), 582–589 (2003)

    Article  Google Scholar 

  16. González, T., Márquez, R., Bernal, M., Guerra, T.M.: Nonquadratic controller and observer design for continuous TS models: a discrete-inspired solution. Int. J. Fuzzy Syst. 18(1), 1–14 (2016)

    Article  MathSciNet  Google Scholar 

  17. Pan, J., Guerra, T., Fei, S., Jaadari, A.: Nonquadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach. IEEE Trans. Fuzzy Syst. 20(3), 594–602 (2012)

    Article  Google Scholar 

  18. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. González, T., Bernal, M., Sala, A., Aguiar, B.: Cancellation-based nonquadratic controller design for nonlinear systems via Takagi–Sugeno models. IEEE Trans. Cybern. 47(9), 2628–2638 (2017)

    Article  Google Scholar 

  20. Boyd, S., Ghaoui, L.E., Feron, E., Belakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, vol. 15. SIAM: Studies In Applied Mathematics, Philadelphia (1994)

    Book  MATH  Google Scholar 

  21. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. Math Works, Natick (1995)

    Google Scholar 

  22. Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peaucelle, D., Arzelier, D., Bachelier, O., Bernussou, J.: A new robust D-stability condition for real convex polytopic uncertainty. Syst. Control Lett. 40(1), 21–30 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tuan, H., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)

    Article  Google Scholar 

  25. Duan, G.R.: Anal. Des. Descr. Linear Syst. Springer-Verlag, New York (2010)

    Book  Google Scholar 

  26. Xie, X., Yue, D., Ma, T., Zhu, X.: Further studies on control synthesis of discrete-time TS fuzzy systems via augmented multi-indexed matrix approach. IEEE Trans. Cybern. 44(12), 2784–2791 (2014)

    Article  Google Scholar 

  27. Gear, C.W.: Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput. 9(1), 39–47 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat. Comput. 9(2), 213–231 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kumar, A., Daoutidis, P.: Control of nonlinear differential algebraic equation systems: an overview. In: Nonlinear Model Based Process Control. Springer, pp. 311–344 (1998)

  30. Lofberg, J.: YALMIP : a toolbox for modeling and optimization in matlab. In: 2004 IEEE International Symposium on Computer Aided Control Systems Design, vol. 2004, pp. 284–289

  31. Márquez, R.: New control and observation schemes based on Takagi-Sugeno models. Ph.D. dissertation, Université de Valenciennes et du Hainaut Cambrésis (2015)

  32. Taniguchi, T., Tanaka, K., Wang, H.O.: Fuzzy descriptor systems and nonlinear model following control. IEEE Trans. Fuzzy Syst. 8(4), 442–452 (2000)

    Article  Google Scholar 

  33. Reißig, G.: Differential-algebraic equations and impasse points. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(2), 122–133 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the CONACYT scholarship 583472, the postdoctoral fellowship for CVU 366627, the PROFAPI Projects 2016-0081 and 2016-0091, and the ITSON PFCE 2016-17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Bernal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arceo, J.C., Márquez, R., Estrada-Manzo, V. et al. Stabilization of Nonlinear Singular Systems via Takagi–Sugeno Models and Robust Differentiators. Int. J. Fuzzy Syst. 20, 1451–1459 (2018). https://doi.org/10.1007/s40815-018-0463-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0463-x

Keywords

Navigation