Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Fuzzy Inventory Model for a Deteriorating Item with Variable Demand, Permissible Delay in Payments and Partial Backlogging with Shortage Follows Inventory (SFI) Policy

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This research studies a fuzzy inventory model for a deteriorating item with permissible delay in payments. For this paper, the demand depends on selling price and the frequency of the advertisement. In order to make a more realistic inventory model, it is considered the case of stock-out which is partial backlogged. In this work, it is taken account the shortage follows inventory (SFI) policy. Several scenarios and sub-scenarios have been provided, and each corresponding problem has been defined as a constrained optimization problem in the fuzzy environment. Further, these problems have converted into a new problem using the nearest interval approximation technique of fuzzy numbers. Quantum-behaved particle swarm optimization (QPSO) algorithm with the help of interval mathematics has been used to solve the optimization problems. Numerical examples have been solved in order to illustrate the proposed inventory model. Finally, with the aim to analyse the significant influence of different factors on the optimal policies, a sensitivity analysis is done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Harris, F.W.: How many parts to make at once, factory. Mag. Manag. 10(2), 135–136 and 152 (1913)

    Google Scholar 

  2. Ghare, P.M., Schrader, G.F.: A model for exponentially decaying inventory. J. Ind. Eng. 14(5), 238–243 (1963)

    Google Scholar 

  3. Chen, S.C., Cárdenas-Barrón, L.E., Teng, J.T.: Retailer’s economic order quantity when the supplier offers conditionally permissible delay in payments link to order quantity. Int. J. Prod. Econ. 155, 284–291 (2014)

    Article  Google Scholar 

  4. Haley, C.W., Higgins, R.C.: Inventory policy and trade credit financing. Manag. Sci. 20(4-part-i), 464–471 (1973)

    Article  MATH  Google Scholar 

  5. Goyal, S.K.: Economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 36(4), 335–338 (1985)

    Article  MATH  Google Scholar 

  6. Aggarwal, S.P., Jaggi, C.K.: Ordering policies of deteriorating items under permissible delay in payments. J. Oper. Res. Soc. 46(5), 658–662 (1995)

    Article  MATH  Google Scholar 

  7. Jamal, A.M.M., Sarker, B.R., Wang, S.: An ordering policy for deteriorating items with allowable shortages and permissible delay in payment. J. Oper. Res. Soc. 48(8), 826–833 (1997)

    Article  MATH  Google Scholar 

  8. Emmons, H.: A replenishment model for radioactive nuclide generators. Manag. Sci. 14(5), 263–274 (1968)

    Article  Google Scholar 

  9. Covert, R.P., Philip, G.C.: An EOQ model for items with Weibull distribution deterioration. AIIE Trans. 5(4), 323–326 (1973)

    Article  Google Scholar 

  10. Giri, B.C., Jalan, A.K., Chaudhuri, K.S.: Economic order quantity model with Weibull deterioration distribution, shortage and ramp-type demand. Int. J. Syst. Sci. 34(4), 237–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghosh, S.K., Chaudhuri, K.S.: An order-level inventory model for a deteriorating item with Weibull distribution deterioration, time-quadratic demand and shortages. Adv. Model. Optim. 6(1), 21–35 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Chakrabarty, T., Giri, B.C., Chaudhuri, K.S.: An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: an extension of Philip’s model. Comput. Oper. Res. 25(7), 649–657 (1998)

    Article  MATH  Google Scholar 

  13. Giri, B.C., Chakraborty, T., Chaudhuri, K.S.: Retailer’s optimal policy for perishable product with shortages when supplier offers all-unit quantity and freight cost discounts. Proc. Natl. Acad. Sci. 69(A), 315–326 (1999)

    MATH  Google Scholar 

  14. Sana, S., Goyal, S.K., Chaudhuri, K.S.: A production–inventory model for a deteriorating item with trended demand and shortages. Eur. J. Oper. Res. 157(2), 357–371 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sana, S., Chaudhuri, K.S.: On a volume flexible production policy for deteriorating item with stock-dependent demand rate. Nonlinear Phenom. Complex Syst. 7(1), 61–68 (2004)

    MATH  Google Scholar 

  16. Misra, R.B.: Optimum production lot-size model for a system with deteriorating inventory. Int. J. Prod. Res. 13(5), 495–505 (1975)

    Article  Google Scholar 

  17. Deb, M., Chaudhuri, K.S.: An EOQ model for items with finite rate of production and variable rate of deterioration. Opsearch 23, 175–181 (1986)

    MATH  Google Scholar 

  18. Giri, B.C., Pal, S., Goswami, A., Chaudhuri, K.S.: An inventory model for deteriorating items with stock-dependent demand rate. Eur. J. Oper. Res. 95(3), 604–610 (1996)

    Article  MATH  Google Scholar 

  19. Goswami, A., Chaudhuri, K.S.: An EOQ model for deteriorating items with shortage and a linear trend in demand. J. Oper. Res. Soc. 42(12), 1105–1110 (1991)

    Article  MATH  Google Scholar 

  20. Bhunia, A.K., Maiti, M.: Deterministic inventory model for deteriorating items with finite rate of replenishment dependent on inventory level. Comput. Oper. Res. 25(11), 997–1006 (1998)

    Article  MATH  Google Scholar 

  21. Bhunia, A.K., Maiti, M.: An inventory model of deteriorating items with lot-size dependent replenishment cost and a linear trend in demand. Appl. Math. Model. 23(4), 301–308 (1999)

    Article  MATH  Google Scholar 

  22. Mandal, B.N., Phaujdar, S.: An inventory model for deteriorating items and stock-dependent consumption rate. J. Oper. Res. Soc. 40(5), 483–488 (1989)

    Article  MATH  Google Scholar 

  23. Padmanabhan, G., Vrat, P.: EOQ models for perishable items under stock-dependent selling rate. Eur. J. Oper. Res. 86(2), 281–292 (1995)

    Article  MATH  Google Scholar 

  24. Pal, S., Goswami, A., Chaudhuri, K.S.: A deterministic inventory model for deteriorating items with stock-dependent demand rate. Int. J. Prod. Econ. 32(3), 291–299 (1993)

    Article  Google Scholar 

  25. Mandal, M., Maiti, M.: Inventory model for damageable items with stock-dependent demand and shortages. Opsearch 34(3), 156–166 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Goyal, S.K., Gunasekaran, A.: An integrated production-inventory-marketing model for deteriorating items. Comput. Ind. Eng. 28(4), 755–762 (1995)

    Article  Google Scholar 

  27. Sarker, B.R., Mukherjee, S., Balan, C.V.: An order-level lot-size inventory model with inventory-level dependent demand and deterioration. Int. J. Prod. Econ. 48(3), 227–236 (1997)

    Article  Google Scholar 

  28. Pal, A.K., Bhunia, A.K., Mukherjee, R.N.: Optimal lot size model for deteriorating items with demand rate dependent on displayed stock level (DSL) and partial backordering. Eur. J. Oper. Res. 175(2), 977–991 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Raafat, F.: Survey of literature on continuously deteriorating inventory models. J. Oper. Res. Soc. 42(1), 27–37 (1991)

    Article  MATH  Google Scholar 

  30. Goyal, S.K., Giri, B.C.: Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 134(1), 1–16 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bakker, M., Riezebos, J., Teunter, R.H.: Review of inventory systems with deterioration since 2001. Eur. J. Oper. Res. 221(2), 275–284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Janssen, L., Claus, T., Sauer, J.: Literature review of deteriorating inventory models by key topics from 2012 to 2015. Int. J. Prod. Econ. 182, 86–112 (2016)

    Article  Google Scholar 

  33. Summers, B., Wilson, N.: An empirical investigation of trade credit demand. Int. J. Econ. Bus. 9(2), 257–270 (2002)

    Article  Google Scholar 

  34. Seifert, D., Seifert, R.W., Protopappa-Sieke, M.: A review of trade credit literature: opportunities for research in operations. Eur. J. Oper. Res. 231(2), 245–256 (2013)

    Article  Google Scholar 

  35. Teng, J.T.: On the economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 53(8), 915–918 (2002)

    Article  MATH  Google Scholar 

  36. Das, B.C., Das, B., Mondal, S.K.: An integrated production inventory model under interactive fuzzy credit period for deteriorating item with several markets. Appl. Soft Comput. 28, 453–465 (2015)

    Article  Google Scholar 

  37. Das, B.C., Das, B., Mondal, S.K.: An integrated production-inventory model with defective item dependent stochastic credit period. Comput. Ind. Eng. 110, 255–263 (2017)

    Article  Google Scholar 

  38. Guchhait, P., Maiti, M.K., Maiti, M.: A production inventory model with fuzzy production and demand using fuzzy differential equation: an interval compared genetic algorithm approach. Eng. Appl. Artif. Intell. 26(2), 766–778 (2013)

    Article  Google Scholar 

  39. Guchhait, P., Maiti, M.K., Maiti, M.: Inventory model of a deteriorating item with price and credit linked fuzzy demand: a fuzzy differential equation approach. Opsearch 51(3), 321–353 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chang, C.T., Ouyang, L.Y., Teng, J.T.: An EOQ model for deteriorating items under supplier credits linked to ordering quantity. Appl. Math. Model. 27(12), 983–996 (2003)

    Article  MATH  Google Scholar 

  41. Abad, P.L., Jaggi, C.K.: A joint approach for setting unit price and the length of the credit period for a seller when end demand is price sensitive. Int. J. Prod. Econ. 83(2), 115–122 (2003)

    Article  Google Scholar 

  42. Ouyang, L.Y., Wu, K.S., Yang, C.T.: A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Comput. Ind. Eng. 51(4), 637–651 (2006)

    Article  Google Scholar 

  43. Huang, Y.F.: An inventory model under two levels of trade credit and limited storage space derived without derivatives. Appl. Math. Model. 30(5), 418–436 (2006)

    Article  MATH  Google Scholar 

  44. Huang, Y.F.: Economic order quantity under conditionally permissible delay in payments. Eur. J. Oper. Res. 176(2), 911–924 (2007)

    Article  MATH  Google Scholar 

  45. Huang, Y.F.: Optimal retailer’s replenishment decisions in the EPQ model under two levels of trade credit policy. Eur. J. Oper. Res. 176(3), 1577–1591 (2007)

    Article  MATH  Google Scholar 

  46. Sana, S.S., Chaudhuri, K.S.: A deterministic EOQ model with delays in payments and price-discount offers. Eur. J. Oper. Res. 184(2), 509–533 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Huang, Y.F., Hsu, K.H.: An EOQ model under retailer partial trade credit policy in supply chain. Int. J. Prod. Econ. 112(2), 655–664 (2008)

    Article  Google Scholar 

  48. Ho, C.H., Ouyang, L.Y., Su, C.H.: Optimal pricing, shipment and payment policy for an integrated supplier–buyer inventory model with two-part trade credit. Eur. J. Oper. Res. 187(2), 496–510 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Bhunia, A.K., Shaikh, A.A., Sahoo, L.: A two-warehouse inventory model for deteriorating items under permissible delay in payment via particle swarm optimization. Int. J. Logist. Syst. Manag. 24(1), 45–68 (2016)

    Article  Google Scholar 

  50. Jaggi, C.K., Tiwari, S., Shafi, A.: Effect of deterioration on two-warehouse inventory model with imperfect quality. Comput. Ind. Eng. 88, 378–385 (2015)

    Article  Google Scholar 

  51. Jaggi, C., Sharma, A., Tiwari, S.: Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand under permissible delay in payments: a new approach. Int. J. Ind. Eng. Comput. 6(4), 481–502 (2015)

    Google Scholar 

  52. Jaggi, C.K., Tiwari, S., Goel, S.K.: Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Ann. Oper. Res. 248(1–2), 253–280 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tiwari, S., Cárdenas-Barrón, L.E., Khanna, A., Jaggi, C.K.: Impact of trade credit and inflation on retailer’s ordering policies for non-instantaneous deteriorating items in a two-warehouse environment. Int. J. Prod. Econ. 176, 154–169 (2016)

    Article  Google Scholar 

  54. Jaggi, C.K., Yadavalli, V.S.S., Sharma, A., Tiwari, S.: A fuzzy EOQ model with allowable shortage under different trade credit terms. Appl. Math. Inf. Sci. 10(2), 785–805 (2016)

    Article  Google Scholar 

  55. Jaggi, C., Tiwari, S., Goel, S.: Replenishment policy for non-instantaneous deteriorating items in a two storage facilities under inflationary conditions. Int. J. Ind. Eng. Comput. 7(3), 489–506 (2016)

    Google Scholar 

  56. Bhunia, A.K., Mahato, S.K., Shaikh, A.A., Jaggi, C.K.: A deteriorating inventory model with displayed stock-level-dependent demand and partially backlogged shortages with all unit discount facilities via particle swarm optimisation. Int. J. Syst. Sci. Oper. Logist. 1(3), 164–180 (2014)

    Google Scholar 

  57. Bhunia, A.K., Shaikh, A.A.: Investigation of two-warehouse inventory problems in interval environment under inflation via particle swarm optimization. Math. Comput. Model. Dyn. Syst. 22(2), 160–179 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Grzegorzewski, P.: Nearest interval approximation of a fuzzy number. Fuzzy Sets Syst. 130(3), 321–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Bhunia, A.K., Shaikh, A.A.: An application of PSO in a two-warehouse inventory model for deteriorating item under permissible delay in payment with different inventory policies. Appl. Math. Comput. 256, 831–850 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Kennedy, J.F., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Network, vol. IV, Perth, Australia, pp. 1942–1948 (1995)

  61. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  62. Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization: In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999, CEC 99, vol. 3, pp. 1951–1957. IEEE (1999)

  63. Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum behaviour. In: Congress on Evolutionary Computation, 2004, CEC2004, vol. 1, pp. 325–331. IEEE (2004)

  64. Sun, J., Xu, W., Feng, B.: A global search strategy of quantum-behaved particle swarm optimization. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 111–116. IEEE (2004)

  65. Sahoo, L., Bhunia, A.K., Kapur, P.K.: Genetic algorithm based multi-objective reliability optimization in interval environment. Comput. Ind. Eng. 62(1), 152–160 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editor and anonymous reviewers for their constructive feedback on earlier drafts of this manuscript. The Tecnológico de Monterrey Research Group in Industrial Engineering and Numerical Methods 0822B01006 supported the first and third authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo Eduardo Cárdenas-Barrón.

Appendices

Appendix A: Brief Description of Quantum-Behaved Particle Swarm Optimization (QPSO)

This Appendix is briefly discussing about the efficient soft computing method named as quantum-behaved particle swarm optimization method (see for instance Bhunia and Shaikh [59]). The solution found by this QPSO method is known as efficient solution or in other words can be termed as optimal answer. Unfortunately, the optimality of the solution cannot be proved theoretically. It is well known that Kennedy and Eberhart [60] developed the particle swarm optimization technique considering generic behaviour of bird flocking/fish schooling.

In particle swarm optimization, the different attributes of ith (\(1 \le i \le p_{\text{size}}\)) particles are as follows:

  1. 1.

    \(x_{i} = (x_{i1} ,x_{i2} , \ldots ,x_{in} )\) is current position in search spaces.

  2. 2.

    \(v_{i} = (v_{i1} ,v_{i2} , \ldots ,v_{in} )\) is current velocity.

  3. 3.

    \(p_{i} = (p_{i1} ,p_{i2} , \ldots ,p_{in} )\) is personal best position or (pbest)

  4. 4.

    \(p_{\text{g}} = (p_{{{\text{g}}1}} ,p_{{{\text{g}}2}} , \ldots ,p_{{{\text{g}}n}} ).\) is global best (gbest) position

According to Kennedy and Eberhart [60], the velocity of ith particle in kth iteration/generation is updated by the following rule:

$$v_{ij}^{(k + 1)} = wv_{ij}^{(k)} + c_{1} r_{1j}^{(k)} \left( {p_{ij}^{(k)} - x_{ij}^{(k)} } \right) + c_{2} r_{2j}^{(k)} \left( {p_{gj}^{(k)} - x_{ij}^{(k)} } \right),\quad {\text{where}}\;j = 1,2, \ldots ,n,\;k = 1,2, \ldots ,m_{g}$$

Here, inertia weight is \(w,\) acceleration coefficients are \(c_{1} \& c_{2}\) & \(r_{1j}^{(k)} \sim U(0, \, 1); \, r_{2j}^{(k)} \sim U(0, \, 1).\)

At (k + 1)-th iteration, the new position of ith particle is calculated by

$$x_{ij}^{(k + 1)} = x_{ij}^{(k)} + v_{ij}^{(k + 1)} \quad {\text{i}} . {\text{e}} . ,\quad x_{i}^{(k + 1)} = x_{i}^{(k)} + v_{i}^{(k + 1)}$$

The personal best (pbest) position of i-th particle is updated as follows:

$$p_{i}^{(k + 1)} = \left\{ {\begin{array}{*{20}l} {p_{i}^{(k)} } \hfill & {{\text{if}}\; \, f\left( {x_{i}^{(k + 1)} } \right) \le \,f\left( {p_{i}^{(k)} } \right)} \hfill \\ {x_{i}^{(k)} } \hfill & {{\text{if}}\;f\left( {x_{i}^{(k + 1)} } \right) > f\left( {p_{i}^{(k)} } \right)} \hfill \\ \end{array} } \right.\quad {\text{with}}\;p_{i}^{(0)} = x_{i}^{(0)}$$

where the objective is to maximize function f.

Global best (gbest) position p g can be identified by any particle at the time of all previous iterations/generations is defined as \(p_{g}^{(k + 1)} = \arg \max_{{p_{i} }} f(p_{i}^{(k + 1)} ),\quad 1 \le i \le p_{\text{size}} .\)

Each particle must converge to its local attractor \(\tilde{p}_{i} = (\tilde{p}_{i1} ,\tilde{p}_{i2} , \ldots ,\tilde{p}_{in} )\) (Clerc and Kennedy [61]) whose components are given by

$$\begin{aligned} & \tilde{p}_{ij}^{(k)} = {{\left[ {c_{1} p_{ij}^{(k)} + c_{2} p_{gj}^{(k)} } \right]} \mathord{\left/ {\vphantom {{\left[ {c_{1} p_{ij}^{(k)} + c_{2} p_{gj}^{(k)} } \right]} {\left( {c_{1} + c_{2} } \right)}}} \right. \kern-0pt} {\left( {c_{1} + c_{2} } \right)}},\quad j = 1,2, \ldots ,n \\ & {\text{or}}\;\tilde{p}_{ij}^{(k)} = \phi_{j} p_{ij}^{(k)} + \left( {1 - \phi_{j} } \right)p_{gj}^{(k)} ,\quad j = 1,2, \ldots ,n \\ \end{aligned}$$

where \(\phi_{j} = \frac{{c_{1} r_{1j}^{(k)} }}{{c_{1} r_{1j}^{(k)} + c_{2} r_{2j}^{(k)} }}\)where \(\phi_{j} \sim U(0,1).\)

After Kennedy and Eberhart [60], some new variants of PSO have been proposed considering different velocity updating rules. Amongst these, the popular versions of PSO are: (1) weighted PSO (Clerc [62]) and (2) PSO-CO (Clerc and Kennedy [61]). It is worth mentioning that in these versions of PSO, particle’s behaviour is according to the rule of classical mechanics; here its position and velocity vectors only depict a particle in the swarm. Nevertheless, this is not true in quantum mechanics. Considering quantum behaviour of particle, Sun et al. [63, 64] introduced quantum-behaved PSO (QPSO). According to Sun et al. [63, 64], the iterative equation for the position of the particle in QPSO is determined by

$$x_{ij}^{(k)} = \tilde{p}_{ij}^{(k)} \pm \beta^{{\prime }} \left| {m_{j}^{(k)} - x_{ij}^{(k)} } \right|\log \left( {\frac{1}{{u_{j}^{(k)} }}} \right)$$

where \(u_{j}^{(k)} \sim U(0,1)\) and \(\beta^{{\prime }}\) is acted as contraction–expansion coefficient which worked in order to control convergence speed of an algorithm. The value of \(\beta^{{\prime }}\) can be decreased linearly from 1.0 to 0.5. The global point is called as mainstream (or mean best \((m^{(k)} )\)) of the population at k-th iteration is the mean of the pbest positions of each and every particles.

$$m^{(k)} = \left( {m_{1}^{(k)} ,m_{2}^{(k)} , \ldots ,m_{n}^{(k)} } \right) = \left( {\frac{1}{{p_{\text{size}} }}\sum\limits_{i = 1}^{{p_{\text{size}} }} {p_{i1}^{(k)} ,\frac{1}{{p_{\text{size}} }}\sum\limits_{i = 1}^{{p_{\text{size}} }} {p_{i2}^{(k)} , \ldots ,\frac{1}{{p_{\text{size}} }}\sum\limits_{i = 1}^{{p_{\text{size}} }} {p_{in}^{(k)} } } } } \right).$$

In WQPSO, weighted mean best position is replacing mean best position of QPSO. Therefore, particles can be ranked in decreasing order as per their fitness values. Further, weighted coefficient \(\alpha_{i}\) is assigned and linearly decreasing with the particle’s rank such that nearer the best solution, the larger its weighted coefficient is. The mean best position \(m^{(k)}\), therefore, is calculated with:

$$m^{(k)} = \left( {m_{1}^{(k)} ,m_{2}^{(k)} , \ldots ,m_{n}^{(k)} } \right) = \left( {\frac{1}{{p_{\text{size}} }}\sum\limits_{i = 1}^{{p_{\text{size}} }} {\alpha_{i1} p_{i1}^{(k)} ,\frac{1}{{p_{\text{size}} }}\sum\limits_{i = 1}^{{p_{\text{size}} }} {\alpha_{i2} p_{i2}^{(k)} , \ldots ,\frac{1}{{p_{\text{size}} }}\sum\limits_{i = 1}^{{p_{\text{size}} }} {\alpha_{in} p_{in}^{(k)} } } } } \right)$$

where \(\alpha_{i}\) is the weighted coefficient and \(\alpha_{\text{id}}\) is the dimension coefficient of every particle. In this work, the weighted coefficient for each particle decreases linearly from 1.5 to 0.5.

On the hand, in GQPSO, \(\tilde{p}_{ij}^{(k)}\) is calculated as follows:

$$\tilde{p}_{ij}^{(k)} = {{\left[ {G^{(k)} p_{ij}^{(k)} + g^{(k)} p_{gj}^{(k)} } \right]} \mathord{\left/ {\vphantom {{\left[ {G^{(k)} p_{ij}^{(k)} + g^{(k)} p_{gj}^{(k)} } \right]} {\left( {G^{(k)} + g^{(k)} } \right)}}} \right. \kern-0pt} {\left( {G^{(k)} + g^{(k)} } \right)}},\quad j = 1,2, \ldots ,n$$

where \(G^{(k)}\) and \(g^{(k)}\) be the random numbers (at kth iteration) which are generated using the absolute value of the Gaussian (Normal) probability distribution with mean (0) and variance (1).

Here \(m^{(k)}\) is computed by

$$m^{(k)} = \left( {m_{1}^{(k)} ,m_{2}^{(k)} , \ldots ,m_{n}^{(k)} } \right) = \left( {\frac{1}{{p_{\text{size}} }}\sum\limits_{i = 1}^{{p_{\text{size}} }} {p_{i1}^{(k)} ,\frac{1}{{p_{\text{size}} }}\sum\limits_{i = 1}^{{p_{\text{size}} }} {p_{i2}^{(k)} , \ldots ,\frac{1}{{p_{\text{size}} }}\sum\limits_{i = 1}^{{p_{\text{size}} }} {p_{in}^{(k)} } } } } \right)$$

and the iterative equation for the position of the particle is given by

$$x_{ij}^{(k)} = \tilde{p}_{ij}^{(k)} \pm \beta^{{\prime }} \left| {m_{j}^{(k)} - x_{ij}^{(k)} } \right|\log \left( {\frac{1}{{G^{(k)} }}} \right)$$

where \(\beta^{{\prime }}\) decreases linearly from 1.0 to 0.5.

Appendix B: Interval Arithmetic and Order Relations

A real number A is represented as an interval number with the form \(A = \left[ {a_{\text{L}} ,a_{\text{R}} } \right] = \left\{ {x:a_{\text{L}} \le x \le a_{\text{R}} ,x \in {\mathbb{R}}} \right\}\) of the width (aR − aL). So, each real number \(x \in {\mathbb{R}}\) is represented as an interval number [x, x] with zero width. In the other way, an interval number can be represented with the centre and radius form as follows \(A = \left\langle {a_{\text{C}} ,a_{\text{W}} } \right\rangle = \left\{ {x:a_{\text{C}} {-}a_{\text{W}} \le x \le a_{\text{C}} + a_{\text{W}} ,x \in {\mathbb{R}}} \right\}\), where centre \(a_{\text{C}} = (a_{\text{L}} + a_{\text{R}} )/2\) and \({\text{radius}} = a_{\text{W}} = \left( {a_{\text{R}} {-}a_{\text{L}} } \right)/2.\)

Definition 1

Let \(A = \, \left[ {a_{\text{L}} ,a_{\text{R}} } \right]\) and \(B = \left[ {b_{\text{L}} ,b_{\text{R}} } \right]\) be two interval numbers. Then addition of two interval numbers, subtraction of two interval numbers, multiplication with scalar number, multiplication of two interval numbers and division of two interval numbers are described below:

Addition of two interval numbers: \(A + B = \left[ {a_{\text{L}} ,a_{\text{R}} } \right] + \left[ {b_{\text{L}} ,b_{\text{R}} } \right] = \left[ {a_{\text{L}} + b_{\text{L}} ,a_{\text{R}} + b_{\text{R}} } \right].\)

Subtraction two interval numbers: \(A - B = \left[ {a_{\text{L}} , a_{\text{R}} } \right] = \left[ {b_{\text{L}} ,b_{\text{R}} } \right] = \left[ {a_{\text{L}} ,a_{\text{R}} } \right] + \left[ { - \,b_{\text{R}} , - \,b_{\text{L}} } \right] = \left[ {a_{\text{L}} - b_{\text{R}} ,a_{\text{R}} - b_{\text{L}} } \right].\)

Multiplication with scalar number:

$$\lambda A = \lambda \left[ {a_{\text{L}} , \, a_{\text{R}} } \right] = \left\{ {\begin{array}{*{20}l} {\left[ {\lambda a_{\text{L}} , \, \lambda a_{\text{R}} } \right]} \hfill & {{\text{if}}\;\lambda \ge 0} \hfill \\ {\left[ {\lambda a_{\text{R}} , \, \lambda a_{\text{L}} } \right]} \hfill & {{\text{if}}\;\lambda < 0} \hfill \\ \end{array} } \right.$$

Multiplication of two interval numbers: \(A \times B = \left[ {\hbox{min} \left( {a_{\text{L}} b_{\text{L}} ,a_{\text{L}} b_{\text{R}} ,a_{\text{R}} b_{\text{L}} ,a_{\text{R}} b_{\text{R}} } \right),\hbox{max} \left( {a_{\text{L}} b_{\text{L}} ,a_{\text{L}} b_{\text{R}} ,a_{\text{R}} b_{\text{L}} ,a_{\text{R}} b_{\text{R}} } \right)} \right]\)

Division of two interval numbers:

$$\frac{A}{B} = A \times \left( {\frac{1}{B}} \right) = \left[ {a_{\text{L}} , \, a_{\text{R}} } \right] \times \left[ {\frac{1}{{b_{\text{R}} }}, \, \frac{1}{{b_{\text{L}} }}} \right]\quad {\text{where}}\quad 0 \notin \left[ {b_{\text{L}} ,b_{\text{R}} } \right]$$

Definition 2

Let us consider \(A = \left\langle {a_{\text{C}} ,a_{\text{W}} } \right\rangle\) and \(B = \left\langle {b_{\text{C}} ,b_{\text{W}} } \right\rangle\) in the form of centre and radius. Then, addition, subtraction and scalar multiplication of interval numbers with centre and radius form are described as follows:

$$\begin{aligned} & A + B = \left\langle {a_{\text{C}} + b_{\text{C}} ,a_{\text{W}} + b_{\text{W}} } \right\rangle \\ & A{-}B = \, \left\langle {a_{\text{C}} ,a_{\text{W}} } \right\rangle - \left\langle {b_{\text{C}} ,b_{\text{W}} } \right\rangle = \left\langle {a_{\text{C}} ,a_{\text{W}} } \right\rangle + \left\langle { - b_{\text{C}} ,b_{\text{W}} } \right\rangle = \left\langle {a_{\text{C}} {-}b_{\text{C}} ,a_{\text{W}} + b_{\text{W}} } \right\rangle \\ & \lambda A = \lambda \left\langle {a_{\text{C}} ,a_{\text{W}} } \right\rangle = \left\langle {\lambda a_{\text{C}} ,\lambda a_{\text{W}} } \right\rangle \\ \end{aligned}$$

2.1 Interval Order Relations

Consider \(A = [a_{\text{L}} ,a_{\text{R}} ]\) and \(B = [b_{\text{L}} ,b_{\text{R}} ]\) are two interval numbers. There may be any one of the form happened of these two intervals which describe as follows:

Case 1:

These two intervals are distinct and disjoint (see Fig. 2).

Fig. 2
figure 2

Type-1 intervals

Case 2:

These two intervals are partially related or overlapping (see Fig. 3).

Fig. 3
figure 3

Type-2 intervals

Case 3:

Any one of the intervals contains other (see Fig. 4).

Fig. 4
figure 4

Type-3 intervals

Sahoo et al. [65] have proposed the definitions of interval order relations between two interval numbers in order to solve the maximization and minimization problems.

Definition 3

Order relation of type \(>_{\hbox{max} }\) between two intervals. Let us consider two intervals \(A = [a_{\text{L}} ,a_{\text{R}} ] = \left\langle {a_{\text{c}} ,a_{\text{w}} } \right\rangle\) and \(B = [b_{\text{L}} ,b_{\text{R}} ] = \left\langle {b_{\text{c}} ,b_{\text{w}} } \right\rangle\). Therefore, for solving the maximization problems, the following properties hold:

  1. 1.

    \(A >_{\hbox{max} } B \Leftrightarrow a_{\text{c}} > b_{\text{c}} \;{\text{for}}\;{\text{Type}}\;{\text{I}}\;{\text{and}}\;{\text{Type}}\;{\text{II}}\;{\text{intervals}},\)

  2. 2.

    \(A >_{\hbox{max} } B \Leftrightarrow\) either \(a_{\text{c}} \ge b_{\text{c}} \wedge a_{\text{w}} < b_{\text{w}}\) or \(a_{\text{c}} \ge b_{\text{c}} \wedge a_{\text{R}} > b_{\text{R}} \;{\text{for}}\;{\text{Type}}\;{\text{III}}\;{\text{intervals}},\)

According to the above definition, the interval number \(A\) is accepted for maximization case. So, the order relation \(A >_{\hbox{max}} B\) is not symmetric, but it is reflexive and transitive.

Definition 4

Order relation of type \(<_{\hbox{min} }\) between two intervals. Let us consider two interval numbers \(A = [a_{\text{L}} ,a_{\text{R}} ] = \left\langle {a_{\text{c}} ,a_{\text{w}} } \right\rangle\) and \(B = [b_{\text{L}} ,b_{\text{R}} ] = \left\langle {b_{\text{c}} ,b_{\text{w}} } \right\rangle\). Then, for solving the minimization problems, the following properties hold:

  1. 1.

    \(A <_{\hbox{min} } \; B \Leftrightarrow a_{\text{c}} < b_{\text{c}} \;{\text{for}}\;{\text{Type}}\;{\text{I}}\;{\text{and}}\;{\text{Type}}\;{\text{II}}\;{\text{intervals}},\)

  2. 2.

    \(A <_{\hbox{min} } \; B \Leftrightarrow\) either \(a_{\text{c}} \le b_{\text{c}} \wedge a_{\text{w}} < b_{\text{w}}\) or \(a_{\text{c}} \le b_{\text{c}} \wedge a_{\text{L}} < b_{\text{L}} \;{\text{for}}\;{\text{Type}}\;{\text{III}}\;{\text{intervals}},\)

According to the above definition, the interval \(A\) is accepted for minimization case. So, the order relation \(A \,{<_{\hbox{min} }}\, B\) is reflexive and transitive, but it is not symmetric.

\(A \,{<_{\hbox{min} }}\, B\) is reflexive and transitive, but it is not symmetric.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.A., Bhunia, A.K., Cárdenas-Barrón, L.E. et al. A Fuzzy Inventory Model for a Deteriorating Item with Variable Demand, Permissible Delay in Payments and Partial Backlogging with Shortage Follows Inventory (SFI) Policy. Int. J. Fuzzy Syst. 20, 1606–1623 (2018). https://doi.org/10.1007/s40815-018-0466-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0466-7

Keywords

Navigation