Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Hesitant Uncertain Linguistic Z-Numbers and Their Application in Multi-criteria Group Decision-Making Problems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper introduces hesitant uncertain linguistic Z-numbers (HULZNs) based on Z-numbers and linguistic models. HULZNs can serve as a reliable tool to depict complex and uncertain decision-making information and reflect the hesitancy of DMs. This paper focuses on the development of an innovative method to address multi-criteria group decision-making (MCGDM) problems in which the weight information is incompletely known. Handling qualitative information requires the effective support of quantitative tools, after which the linguistic scale function is employed to deal with linguistic information. First, the operations and distance of HULZNs are defined. Then, two power aggregation operators for HULZNs are proposed. Subsequently, a new MCGDM approach is developed by incorporating the power aggregation operators and the VIKOR model. Finally, an illustrative example of ERP system selection is provided for demonstration, and the feasibility and validity of the proposed method are further verified by sensitivity analysis and comparison with an existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–356 (1965)

    Article  MATH  Google Scholar 

  2. Yager, R.R.: Multiple objective decision-making using fuzzy sets. Int. J. Man Mach. Stud. 9(4), 375–382 (1977)

    Article  MATH  Google Scholar 

  3. Khatibi, V., Montazer, G.A.: Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition. Artif. Intell. Med. 47(1), 43–52 (2009)

    Article  Google Scholar 

  4. Cateni, S., Vannucci, M., Colla, V.: Industrial multiple criteria decision making problems handled by means of fuzzy inference-based decision support systems. In: International Conference on Intelligent Systems, Modelling and Simulation, ISMS 2013, Bangkok (Thailand), pp. 12–17 (2013)

  5. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  6. Liu, P.D.: Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Trans. Fuzzy Syst. 22(1), 83–97 (2014)

    Article  MathSciNet  Google Scholar 

  7. Wu, X.H., Wang, J.Q., Peng, J.J., Chen, X.H.: Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. (2016). doi:10.1007/s40815-016-0180-2

    Google Scholar 

  8. Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. In: The 18th IEEE International Conference on Fuzzy Systems, pp. 1378–1382 (2009)

  9. Rodríguez, R.M., Bedregal, B., Bustince, H., Dong, Y.C., Farhadinia, B., Kahraman, C., Martinez, L., Torra, V., Xu, Y.J., Xu, Z.S., Herrera, F.: A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress. Inf. Fusion 29, 89–97 (2016)

    Article  Google Scholar 

  10. Kang, B.Y., Wei, D.J., Li, Y., Deng, Y.: Decision making using Z-numbers under uncertain environment. J. Comput. Inf. Syst. 8(7), 2807–2814 (2012)

    Google Scholar 

  11. Zadeh, L.A.: A note on Z-numbers. Inf. Sci. 181(14), 2923–2932 (2011)

    Article  MATH  Google Scholar 

  12. Velammal, G., Bhanu, M.S.: Intuitionistic Z-numbers. Am. Int. J. Res. Sci. Technol. Eng. Math. 9(1), 140–142 (2015)

    Google Scholar 

  13. Aliev, R.R., Mraiziq, D.A.T., Huseynov, O.H.: Expected utility based decision making under Z-information and its application. Comput. Intell. Neurosci. (2015). doi:10.1155/2015/364512

    Google Scholar 

  14. Bhanu, M.S., Velammal, G.: Operations on Zadeh’s Z-number. IOSR J. Math. 11(3), 88–94 (2015)

    Google Scholar 

  15. Aliev, R.A., Alizadeh, A.V., Huseynov, O.H.: The arithmetic of discrete Z-numbers. Inf. Sci. 290(C), 134–155 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Patel, P., Khorasani, E.S., Rahimi, S.: Modeling and implementation of Z-number. Soft. Comput. 20(4), 1–24 (2015)

    Google Scholar 

  17. Banerjee, R., Pal, S.K.: On Z-numbers and the machine-mind for natural language comprehension. In: Tamir, D.E., Rishe, N.D., Kandel, A. (eds.) Fifty Years of Fuzzy Logic and its Applications, pp. 415–457. Springer, Berlin (2015)

  18. Kang, B.Y., Hu, Y., Deng, Y., Zhou, D.Y.: A new methodology of multi-criteria decision-making in supplier selection based on Z-numbers. Math. Prob. Eng. 2016(1), 1–17 (2016)

    Google Scholar 

  19. Kang, B.Y., Wei, D., Li, Y., Deng, Y.: A method of converting Z-number to classical fuzzy number. J. Inf. Comput. Sci. 9(3), 703–709 (2012)

    Google Scholar 

  20. Xiao, Z.Q.: Application of Z-numbers in multi-criteria decision making. In: International Conference on Informative and Cybernetics for Computational Social Systems. IEEE, pp. 91–95 (2014)

  21. Yaakob, A.M., Gegov, A.: Interactive TOPSIS based group decision making methodology using Z-numbers. Int. J. Comput. Intell. Syst. 9(2), 311–324 (2016)

    Article  Google Scholar 

  22. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martínez, L., Ruan, D., Herrera, F., Herrera-Viedma, E., Wang, P.P.: Linguistic decision making: tools and applications. Inf. Sci. 179(14), 2297–2298 (2009)

    Article  Google Scholar 

  24. Chen, Y.H., Wang, T.C., Wu, C.Y.: Multi-criteria decision making with fuzzy linguistic preference relations. Appl. Math. Model. 35(3), 1322–1330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rodríguez, R.M., Labella, Á., Martínez, L.: An overview on fuzzy modelling of complex linguistic preferences in decision making. Int. J. Comput. Intell. Syst. 9(sup1), 81–94 (2016)

    Article  Google Scholar 

  26. Xu, Z.S.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166(1–4), 19–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, Z.S.: Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 168(1), 171–184 (2004)

    Article  MATH  Google Scholar 

  28. Wei, G.W., Zhao, X.F., Lin, R., Wang, H.J.: Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 37(7), 5277–5285 (2013)

    Article  MathSciNet  Google Scholar 

  29. Park, J.H., Gwak, M.G., Kwun, Y.C.: Uncertain linguistic harmonic mean operators and their applications to multiple attribute group decision making. Computing 93(1), 47–64 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tian, Z.P., Wang, J., Wang, J.Q., Zhang, H.Y.: A likelihood-based qualitative flexible approach with hesitant fuzzy linguistic information. Cogn. Comput. 8(4), 670–683 (2016)

    Article  Google Scholar 

  31. Zhang, Z., Wu, C.: Hesitant fuzzy linguistic aggregation operators and their applications to multiple attribute group decision making. J. Intell. Fuzzy Syst. Appl. Eng. Technol. 26(5), 2185–2202 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Zhou, H., Wang, J.Q., Zhang, H.Y.: Multi-criteria decision-making approaches based on distance measures for linguistic hesitant fuzzy sets. J. Oper. Res. Soc. (2016). doi:10.1057/jors.2016.41

    Google Scholar 

  33. Wang, J., Wang, J.Q., Zhang, H.Y.: A likelihood-based TODIM approach based on multi-hesitant fuzzy linguistic information for evaluation in logistics outsourcing. Comput. Ind. Eng. 99, 287–299 (2016)

    Article  Google Scholar 

  34. Lawry, J.: An alternative approach to computing with words. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 9(1), 3–16 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Delgado, M., Verdegay, J.L., Vila, M.A.: On aggregation operations of linguistic labels. Int. J. Intell. Syst. 8(3), 351–370 (1993)

    Article  MATH  Google Scholar 

  36. Morente-Molinera, J.A., Pérez, I.J., Ureña, M.R.: On multi-granular fuzzy linguistic modeling in group decision making problems: a systematic review and future trends. Knowl. Based Syst. 74, 49–60 (2015)

    Article  Google Scholar 

  37. Han, Z.Q., Wang, J.Q., Zhang, H.Y., Luo, X.X.: Group multi-criteria decision making method with triangular type-2 fuzzy numbers. Int. J. Fuzzy Syst. 18(4), 673–684 (2016)

    Article  MathSciNet  Google Scholar 

  38. Yu, S.M., Wang, J., Wang, J.Q.: An interval type-2 fuzzy likelihood-based MABAC approach and its application in selecting hotels on the tourism website. Int. J. Fuzzy Syst. (2016). doi:10.1007/s40815-016-0217-6

    Google Scholar 

  39. Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8(6), 746–752 (2000)

    Article  Google Scholar 

  40. Wang, J.H., Hao, J.Y.: A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 14(3), 435–445 (2006)

    Article  MathSciNet  Google Scholar 

  41. Ma, Y.X., Wang, J., Wang, J.Q., Chen, X.H.: 2-tuple linguistic aggregation operators based on subjective sensation and objective numerical scales for multi-criteria group decision-making problems. Sci. Iran. 23(3), 1399–1417 (2016)

    Google Scholar 

  42. Wang, J.Q., Peng, J.J., Zhang, H.Y., Liu, T., Chen, X.H.: An uncertain linguistic multi-criteria group decision-making method based on a cloud model. Group Decis. Negot. 24(1), 171–192 (2015)

    Article  Google Scholar 

  43. Wang, J.Q., Wu, J.T., Wang, J., Zhang, H.Y., Chen, X.H.: Multi-criteria decision-making methods based on the Hausdorff distance of hesitant fuzzy linguistic numbers. Soft. Comput. 20(4), 1621–1633 (2016)

    Article  Google Scholar 

  44. Tian, Z.P., Wang, J., Wang, J.Q., Zhang, H.Y.: Multi-criteria decision-making based on generalized prioritized aggregation operators under simplified neutrosophic uncertain linguistic environment. Int. J. Mach. Learn. Cybernet. (2016). doi:10.1007/s13042-016-0552-9

    Google Scholar 

  45. Opricovic, S.: Multicriteria optimization of civil engineering systems. Fac. Civ. Eng. Belgrade 2(1), 5–21 (1998)

    MathSciNet  Google Scholar 

  46. You, X., You, J., Liu, H., Zhen, L.: Group multi-criteria supplier selection using an extended VIKOR method with interval 2-tuple linguistic information. Expert Syst. Appl. 42(4), 1906–1916 (2014)

    Article  Google Scholar 

  47. Liao, H., Xu, Z., Zeng, X.J.: Hesitant fuzzy linguistic VIKOR method and its application in qualitative multiple criteria decision making. IEEE Trans. Fuzzy Syst. 23(5), 1343–1355 (2015)

    Article  Google Scholar 

  48. Yager, R.R.: The power average operator. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 31(6), 724–731 (2001)

    Article  Google Scholar 

  49. Tian, Z.P., Wang, J., Wang, J.Q., Zhang, H.Y.: Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Group Decis. Negot. (2016). doi:10.1007/s10726-016-9479-5

    Google Scholar 

  50. Liu, P.D., Teng, F.: Multiple attribute decision making method based on normal neutrosophic generalized weighted power averaging operator. Int. J. Mach. Learn. Cybernet. (2015). doi:10.1007/s13042-015-0385-y

    Google Scholar 

  51. Bao, G.Y., Lian, X.L., He, M., Wang, L.L.: Improved two-tuple linguistic representation model based on new linguistic evaluation scale. Control Decis. 25(5), 780–784 (2010)

    MathSciNet  Google Scholar 

  52. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econom. J. Econom. Soc. 47(2), 263–291 (1979)

    MATH  Google Scholar 

  53. Kim, S.H., Han, C.H.: An interactive procedure for multi-attribute group decision making with incomplete information. Comput. Oper. Res. 26(8), 755–772 (1999)

    Article  MATH  Google Scholar 

  54. Xu, J.P., Wu, Z.: A maximizing consensus approach for alternative selection based on uncertain linguistic preference relations. Comput. Ind. Eng. 64(4), 999–1008 (2013)

    Article  Google Scholar 

  55. Zhang, G.Q., Dong, Y., Xu, Y.: Consistency and consensus measures for linguistic preference relations based on distribution assessments. Inf. Fusion 17(1), 46–55 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the editors and anonymous reviewers for their helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (Nos. 71571193 and 71271218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Hg., Wang, Jq. Hesitant Uncertain Linguistic Z-Numbers and Their Application in Multi-criteria Group Decision-Making Problems. Int. J. Fuzzy Syst. 19, 1300–1316 (2017). https://doi.org/10.1007/s40815-016-0257-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0257-y

Keywords

Navigation