Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Ranking Interval-Valued Fuzzy Numbers with Intuitionistic Fuzzy Possibility Degree and Its Application to Fuzzy Multi-Attribute Decision Making

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, we present the concept of intuitionistic fuzzy possibility degree (IFPD) for ranking interval-valued fuzzy numbers. This method overcomes the shortcomings of the previous techniques by giving the possibility degree in the form of intuitionistic fuzzy value, which contains positive degree, negative degree, and hesitant degree to compare any two intervals. The prominent characteristic of this method is that it can deal with the incomparable cases effectively, i.e., the two interval numbers have the same center or one interval number is nested in another one. As an application of the proposed method, a fuzzy multi-attribute decision-making method based on the IFPD is studied. Finally, we use a numerical example of selecting a laptop to illustrate the application of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abbasbandy, S., Hajjari, T.: A new approach for ranking of trapezoidal fuzzy numbers. Computers & Mathematics with Applications 57, 413–419 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanassov, K.T.: Intuitionistic fuzzy sets. In: V. Sgurev, ed., VII ITKR’s Session, Sofia, (deposed in Central Science and Technical Library, Bulgarian Academy of Sciences, 1697/84, in Bulgarian) (1983)

  4. Behret, H.: Group decision making with intuitionistic fuzzy preference relations. Knowledge-Based Systems 70, 33–43 (2014)

    Article  Google Scholar 

  5. Bodenhofer, U.: Orderings of fuzzy sets based on fuzzy orderings Part I: The Basic Approach. Mathware and Soft Computing 15, 201–218 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Bodenhofer, U.: Orderings of fuzzy sets based on fuzzy orderings Part II: Generalizations. Mathware and Soft Computing 15, 219–249 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Chanas, S., Kuchta, D.: A concept of solution of the Transportation Problem with fuzzy cost coefficient. Fuzzy Sets and Systems 82, 299–305 (1996)

    Article  MathSciNet  Google Scholar 

  8. Chanas, S., Kuchta, D.: Multiobjective programming in optimization of interval objective functions-A generalized approach. European Journal of Optional Research 94, 594–598 (1996)

    Article  MATH  Google Scholar 

  9. Jin, L., Chen, H.Y., Li, X., Yao, M.J.: The optimal interval combination forecasting model based on closeness degree and IOWHA operator under the uncertain environment. Grey Systems: Theory and Application 1(3), 250–260 (2011)

    Article  Google Scholar 

  10. Chen, T.Y.: Multiple criteria group decision-making with generalized interval-valued fuzzy numbers based on signed distances and incomplete weights. Applied Mathematical Modelling 36(7), 3029–3052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  12. Facchinetti, G., Ricci, R.G., Muzzioli, S.: Note on ranking fuzzy triangular numbers. International Journal of Intelligent Systems 13, 613–622 (1998)

    Article  Google Scholar 

  13. Farhadinia, B.: Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets. Information Sciences 240, 129–144 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gorzałczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets and Systems 21(1), 1–17 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Granger, C.W.J., White, H., Kamstra, M.: Interval forecasting: An analysis based upon ARCH-quantile estimators. Journal of Econometrics 40, 87–96 (1989)

    Article  Google Scholar 

  16. Hong, D.H., Lee, S.: Some algebraic properties and a distance measure for interval-valued fuzzy numbers. Information Sciences 148(1), 1–10 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Horiuchi, K., Tamura, N.: VSOP fuzzy numbers and their fuzzy ordering, fuzzy orderings. Fuzzy Sets and Systems 93(2), 197–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ignjatović, J., Ćirić, M., Šešelja, B., Tepavčević, A.: Fuzzy relational inequalities and equations, fuzzy quasi-orders, closures and openings of fuzzy sets. Fuzzy Sets and Systems 260, 1–24 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ishibuchi, H., Tanaka, H.: Multiobjective programming in optimization of the interval objective function. European Journal of Operational Research 48, 219–225 (1990)

    Article  MATH  Google Scholar 

  20. Jahanshahloo, G.R., Lotfi, L.H., Balf, F.R., Rezai, H.Z.: Using Monte Carlo method for ranking interval data. Applied Mathematics and Computation 201, 613–620 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Jiang, C., Han, X., Liu, G.R., Liu, G.P.: A nonlinear interval number programming method for uncertain optimization problems. European Journal of Operational Research 188, 1–13 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kreinovich, V., Nguyen, H.T., Wu, B.: On-line algorithm for computing mean and variance of interval data, and their use in intelligent systems. Information Sciences 177(16), 3228–3238 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kundu, S.: Min-transitivity of fuzzy leftness relationship and its application to decision making. Fuzzy Sets and Systems 86, 357–367 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, X., Ni, Z.W., Yuan, D., Jiang, Y.C., Wu, Z.J., Chen, J.J., Yang, Y.: A novel statistical time-series pattern based interval forecasting strategy for activity durations in workflow systems. The Journal of Systems and Software 84(3), 354–376 (2011)

    Article  Google Scholar 

  25. Moore, R.: In: Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (1979).

  26. Nakahara, Y., Sasaki, M., Gen, M.: On the linear programming problems with interval coefficients. Computers and Industrial Engineering 23, 301–304 (1992)

    Article  Google Scholar 

  27. Okada, S., Gen, M.: Order relation between intervals and its application to shortest path problem. Japanese Journal of Fuzzy Theory and Systems 6, 703–717 (1994)

    MathSciNet  Google Scholar 

  28. Ovchinnikov, S.: Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40(1), 107–126 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sengupta, A., Pal, T.K., Chakraborty, D.: Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets and Systems 119, 129–138 (2001)

    Article  MATH  Google Scholar 

  30. Sengupta, A., Pal, T.K.: Fuzzy preference ordering of interval numbers in decision making. Springer-Verlag, Berlin Heidelberg (2009)

    Book  MATH  Google Scholar 

  31. Sengupta, A., Pal, T.K.: On comparing interval numbers. European Journal of Operational Research 127, 28–43 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sivaraman, G., Nayagam, V.L.G., Ponalagusamy, R.: A complete ranking of incomplete interval information. Expert Systems with Applications 41, 1947–1954 (2014)

    Article  Google Scholar 

  33. Song, P., Liang, J.Y., Qian, Y.H.: A two-grade approach to ranking interval data. Knowledge-Based Systems 27, 234–244 (2012)

    Article  Google Scholar 

  34. Stamenković, A., Ćirić, M., Ignjatović, J.: Reduction of fuzzy automata by means of fuzzy quasi-orders. Information Sciences 275(10), 168–198 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, H.L., Yao, W.X.: The basic properties of some typical systems’ reliability in interval form. Structural Safety 30, 364–373 (2008)

    Article  Google Scholar 

  36. Wang, G., Li, X.: Correlation and information energy of interval-valued fuzzy numbers. Fuzzy Sets and Systems 103(1), 169–175 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Y.M., Yang, J.B., Xu, D.L.: A preference aggregation method through the estimation of utility intervals. Computers and Operations Research 32, 2027–2049 (2005)

    Article  MATH  Google Scholar 

  38. Wu, J., Chiclana, F.: Non-dominance and attitudinal prioritisation methods for intuitionistic and interval-valued intuitionistic fuzzy preference relations. Expert Systems with Applications 39(18), 13409–13416 (2012)

    Article  Google Scholar 

  39. Xu, Y.J., Wang, H.M., Sun, H., Yu, D.J.: A distance-based aggregation approach for group decision making with interval preference orderings. Computers & Industrial Engineering 72, 178–186 (2014)

    Article  Google Scholar 

  40. Xu, Y.J., Li, K.W., Wang, H.M.: Consistency test and weight generation for additive interval fuzzy preference relations. Soft Computing 18(8), 1499–1513 (2014)

    Article  MATH  Google Scholar 

  41. Xu, Y.J., Wang, H.M., Yu, D.J.: Weak transitivity of interval-valued relations. Knowledge-Based Systems 63, 24–32 (2014)

    Article  Google Scholar 

  42. Xu, Y.J., Li, K.W., Wang, H.M.: Incomplete interval fuzzy preference relations and their applications. Computers & Industrial Engineering 67, 93–103 (2014)

    Article  Google Scholar 

  43. Xu, Z.S.: A deviation-based approach to intuitionistic fuzzy multiple attribute group decision making. Group Decision and Negotiation 19, 57–76 (2010)

    Article  Google Scholar 

  44. Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems 15, 1179–1187 (2007)

    Article  Google Scholar 

  45. Yang, X.B., Lin, T.Y., Yang, J.Y., Li, Y., Yu, D.J.: Combination of interval-valued fuzzy set and soft set. Computers & Mathematics with Applications 58, 521–527 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yoshida, Y., Kerre, E.E.: A fuzzy ordering on multi-dimensional fuzzy sets induced from convex cones. Fuzzy Sets and Systems 130(6), 343–355 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zadeh, L.A.: Similarity relations and fuzzy orderings. Information Sciences 3(2), 177–200 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shen, Y.H., Li, H.F., Wang, F.X.: On interval-valued fuzzy metric spaces. International Journal of Fuzzy Systems 14(1), 35–44 (2012)

    MathSciNet  Google Scholar 

  49. Zhang, F., Ignatius, J., Lim, C.P., Zhao, Y.J.: A new method for ranking fuzzy numbers and its application to group decision making. Applied Mathematical Modelling 38, 1563–1582 (2014)

    Article  MathSciNet  Google Scholar 

  50. Liao, H.C., Xu, Z.S.: Priorities of intuitionistic fuzzy preference relation based on multiplicative consistency. IEEE Transactions on Fuzzy Systems 22(6), 1669–1681 (2014)

    Article  Google Scholar 

  51. Yu, D., Merigó, J.M., Zhou, L.G.: Interval-valued multiplicative intuitionistic fuzzy preference relations. International Journal of Fuzzy Systems 15(4), 412–422 (2013)

    MathSciNet  Google Scholar 

  52. Liao, H.C., Xu, Z.S., Zeng, X.-J., Merigó, J.M.: Framework of group decision making with intuitionistic fuzzy preference information. IEEE Transactions on Fuzzy Systems 23(4), 1211–1227 (2015)

    Article  Google Scholar 

  53. Zhang, H.D., Shu, L.: Generalized interval-valued fuzzy rough set and its application in decision making. International Journal of Fuzzy Systems 17(2), 279–291 (2015)

    Article  MathSciNet  Google Scholar 

  54. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114, 505–518 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Xu, Y.J., Wang, H.M.: The induced generalized aggregation operators for intuitionistic fuzzy sets and their application in group decision making. Applied Soft Computing 12(3), 1168–1179 (2012)

    Article  Google Scholar 

  56. Xu, Y.J., Patnayakuni, R., Tao, F.F., Wang, H.M.: Incomplete interval fuzzy preference relations for supplier selection in supply chain management. Technological and Economic Development of Economy 21(3), 379–404 (2015)

    Article  Google Scholar 

  57. Hu, S.-K., Lu, M.-T., Tzeng, G.-H.: Improving mobile commerce adoption using a new hybrid fuzzy MADM model. International Journal of Fuzzy Systems 17(3), 399–413 (2015)

    Article  Google Scholar 

  58. Wei, G.W.: Approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making with incomplete weight information. International Journal of Fuzzy Systems 17(3), 484–489 (2015)

    Article  MathSciNet  Google Scholar 

  59. Xu, Y.J., Wang, H.M.: IFWA and IFGWA methods for MADM under intuitionistic fuzzy environment. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 23(2), 263–284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Xu, Z.S., Liao, H.C.: A survey of approaches to decision making with intuitionistic fuzzy preference relations. Knowledge-Based Systems 80, 131–142 (2015)

    Article  Google Scholar 

  61. Xu, Z.S., Liao, H.C.: Intuitionistic fuzzy analytic hierarchy process. IEEE Transactions on Fuzzy Systems 22(4), 749–761 (2014)

    Article  Google Scholar 

  62. Liao, H.C., Xu, Z.S., Xia, M.M.: Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation. Journal of Intelligent & Fuzzy Systems 27(6), 2969–2985 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions which have helped immensely in improving the quality of this paper. The work was supported by the National Natural Science Foundation of China (Nos. 71301001, 71371011), Provincial Natural Science Research Project of Anhui Colleges (No. KJ2016A250), and Humanity and Social Science Youth Foundation of Ministry of Education (No. 13YJC630092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayou Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Z., Liu, X., Chen, H. et al. Ranking Interval-Valued Fuzzy Numbers with Intuitionistic Fuzzy Possibility Degree and Its Application to Fuzzy Multi-Attribute Decision Making. Int. J. Fuzzy Syst. 19, 646–658 (2017). https://doi.org/10.1007/s40815-016-0193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0193-x

Keywords

Navigation