Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Patent Big Data Analysis using Fuzzy Learning

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Big data has had an immense effect on most social and industrial fields. It has three main characteristics, namely volume, variety, and velocity. Volume refers to the tremendous size of big data, variety pertains to its heterogeneous sources including numbers, text, and figures, and velocity refers to the rapid speed of data growth. Patent documents follow the characteristics of big data. A patent contains various results about the developed technology such as title, abstract, citations, figures, and drawings. In general, the volume of patent documents related to a target technology is very large. Moreover, a massive number of patent applications are submitted to the patent offices in every country daily. Patent data are analyzed for R&D planning by many institutes and companies. In this study, we propose a methodology for technology analysis applied to patent big data. Additionally, we employ fuzzy learning based on the fuzzy rule-based system for patent big data analysis. We study the fuzzy models for classification, regression, and clustering and group the patents by the fuzzy classification model. Using a fuzzy regression model, we build a technological relationship between subtechnologies. Lastly, we develop a fuzzy clustering model for technology clustering. To illustrate how our research may be applied to a practical domain, we employ a case study using the patent documents related to the three-dimensional printing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. IBM: What is big data? www-01.ibm.com/software/data/bigdata. Accessed 26 June 2015

  2. Gartner: Gartner Says Solving “Big data” challenge involves more than just managing volumes of data. www.gartner.com/newsroom/id/1731916 (2015)

  3. Roper, A.T., Cunningham, S.W., Porter, A.L., Mason, T.W., Rossini, F.A., Banks, J.: Forecasting and management of technology. Wiley, New Jersey (2011)

    Book  Google Scholar 

  4. Hunt, D., Nguyen, L., Rodgers, M.: Patent searching tools and techniques. Wiley, New York (2007)

    Google Scholar 

  5. Kim, J., Jun, S.: Graphical causal inference and copula regression model for apple keywords by text mining. Adv. Eng. Inform. 29(4), 918–929 (2015)

    Article  MathSciNet  Google Scholar 

  6. Jun, S.: A big data learning for patent analysis. J. Korean Ins. Intell. Syst. 23(5), 406–411 (2013)

    Article  Google Scholar 

  7. Jun, S., Park, S., Jang, D.: Technology forecasting using matrix map and patent clustering. Ind. Manage. Data Syst. 112(5), 786–807 (2012)

    Article  Google Scholar 

  8. Russo, M.: Genetic fuzzy learning. IEEE. T. Evolut. Comput. 4(3), 259–273 (2000)

    Article  MathSciNet  Google Scholar 

  9. Acampora, G., Pedrycz, W., Vitiello, A.: A competent memetic algorithm for learning fuzzy cognitive maps. IEEE T. Fuzzy Syst. 23(6), 2397–2411 (2015)

    Article  Google Scholar 

  10. Chen, C.L.P., Zhang, C.Y., Chen, L., Gan, M.: Fuzzy restricted boltzmann machine for the enhancement of deep learning. IEEE T. Fuzzy Syst. 23(6), 2163–2173 (2015)

    Article  Google Scholar 

  11. Gonzalez, A., Perez, R., Verdegay, J.L.: Learning the structure of a fuzzy rule: a genetic approach. In Proceedings of the First European Congress on Fuzzy and Intelligent Technologies, pp. 814–819 (1993)

  12. Herrera, F., Lozano, M., Verdegay, J.L.: A learning process for fuzzy control rules using genetic algorithms. Fuzzy Set. Syst. 100(1–3), 143–158 (1998)

    Article  Google Scholar 

  13. Ichihashi, H., Watanabe, T.: Learning control system by a simplified fuzzy reasoning model. Institute for the Physics and Mathematics of the Universe (IPMU). 90, 417–419 (1990)

    Google Scholar 

  14. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE T. Fuzzy Syst. 9(4), 506–515 (2001)

    Article  Google Scholar 

  15. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  16. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, Waltham (2012)

    MATH  Google Scholar 

  17. Ross, S.M.: Introductory statistics, 3rd edn. Elsevier, San Diego (2010)

    MATH  Google Scholar 

  18. Ross, S.M.: Introduction to probability and statistics for engineers and scientists, 4th edn. Elsevier, Seoul (2012)

    Google Scholar 

  19. Riza, L.S., Bergmeir, C., Herrera, F., Benítez, J.M.: frbs: fuzzy rule-based systems for classification and regression in R. J. Stat. Softw. 65(1), 1–30 (2015)

    Google Scholar 

  20. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2015)

  21. Dalgaard, P.: Introductory statistics with R. Springer, New York (2002)

    MATH  Google Scholar 

  22. Riza, L.S., Bergmeir, C., Herrera, F., Benitez, J.M.: Package “frbs”—fuzzy rule-based systems for classification and regression tasks. R Foundation for Statistical Computing, Vienna (2015)

    Google Scholar 

  23. Bujard, A.: Package “fugeR”—fuzzy genetic, a machine learning algorithm to construct prediction model based on fuzzy logic. R Foundation for Statistical Computing, Vienna (2015)

    Google Scholar 

  24. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C., Lin, C.: Package “e1071” - misc functions of the department of statistics, probability theory group (formerly: E1071). TU Wien. R Foundation for Statistical Computing, Vienna (2015)

    Google Scholar 

  25. Lewin, A.: Package “fuzzyFDR” - Exact calculation of fuzzy decision rules for multiple testing. R Foundation for Statistical Computing, Vienna (2015)

    Google Scholar 

  26. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., Studer, M., Roudier, P.: Package “cluster” - finding groups in data: cluster analysis. R Foundation for Statistical Computing, Vienna (2015)

    Google Scholar 

  27. Jun, S., Park, S.: Examining technological innovation of Apple using patent analysis. Ind. Manage. Data Syst. 113(6), 890–907 (2013)

    Article  Google Scholar 

  28. Tseng, Y., Lin, C., Lin, Y.: Text mining techniques for patent analysis. Inf. Process Manag. 43(5), 1216–1247 (2007)

    Article  Google Scholar 

  29. Tseng, Y., Juang, D., Wang, Y., Lin, C.: Text mining for patent map analysis. In Proceedings of IACIS Pacific Conference. pp. 1109–1116 (2005)

  30. Berry, M.W., Kogan, J.: Text mining applications and theory. Wiley, New York (2010)

    Book  Google Scholar 

  31. Jun, S., Lee, S.: Extracting key technology using advanced fuzzy clustering. Int. J. Softw. Eng. Appl. 7(4), 315–322 (2013)

    Google Scholar 

  32. Rikkonen, P., Tapio, P.: Future prospects of alternative agro-based bioenergy use in Finland—constructing scenarios with quantitative and qualitative Delphi data. Technol. Forecast. Soc. 76(7), 978–990 (2009)

    Article  Google Scholar 

  33. Mamdani, E.H.: Applications of fuzzy algorithm for control a simple dynamic plant. P. I. Electr. Eng. 121(12), 1585–1588 (1974)

    Article  Google Scholar 

  34. Khalifa, A.B., Frigui, H.: Multiple instance Mamdani fuzzy inference. Int. J. Fuzzy Log. Intell. Syst. 15(4), 217–231 (2015)

    Article  Google Scholar 

  35. Myers, R.H.: Classical and modern regression with applications. Duxbury, Belmont (1990)

    Google Scholar 

  36. Tanaka, H., Uejima, S., Asai, K.: Linear regression analysis with fuzzy model. IEEE T. Syst. Man Cyb. 12, 903–907 (1982)

    Article  MATH  Google Scholar 

  37. Mendel, J.M.: On a novel way of processing data that uses fuzzy sets for later use in rule-based regression and pattern classification. Int. J. Fuzzy Log. Intell. Syst. 14(1), 1–7 (2014)

    Article  Google Scholar 

  38. Park, S., Kim, J., Jang, D., Lee, H., Jun, S.: Methodology of technological evolution for three-dimensional printing. Ind. Manage. Data Syst. 116(1), 122–146 (2016)

    Article  Google Scholar 

  39. WIPS Corporation (WIPSON), http://www.wipson.com (2015)

  40. The United States Patent and Trademark Office (USPTO), http://www.uspto.gov (2015)

  41. Feinerer, I., Hornik, K.: R Package, “tm”—a framework for text mining applications within R. R Foundation for Statistical Computing, Vienna (2015)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01059742).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghae Jun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Lee, SJ. & Jun, S. Patent Big Data Analysis using Fuzzy Learning. Int. J. Fuzzy Syst. 19, 1158–1167 (2017). https://doi.org/10.1007/s40815-016-0192-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0192-y

Keywords

Navigation