Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Control of Time Delay Polynomial Fuzzy Model Subject to Actuator Saturation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This article is concerned with the design of polynomial fuzzy controller for a class of polynomial fuzzy model subject to both state delay and actuator saturation. Based on polytopic model of the input saturation, two design methods are proposed. In the first method, a specific Lyapunov Krasovskii function is proposed to transform the nonconvex sum of squares (SOS) conditions into convex SOS ones. The second method overcomes the restriction of the first method by bounding the state derivative. The obtained results are formulated in terms of SOS matrices which can be symbolically and numerically solved via the SOSTOOLS and the SeDuMi. Moreover, an attractive region of initial states that ensures asymptotic stability of polynomial fuzzy model is determined. Two numerical examples are given to show the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Fuzzy Syst. SMC–15(1), 116–132 (1985)

    MATH  Google Scholar 

  2. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox for use with Matlab. Math Works, Natick (1995)

    Google Scholar 

  3. Tanaka, K., Yosihida, H., Ohtake, H., Wang, H.: A sum of squares approach to stability analaysis of polynomial fuzzy Systems. In: Proceedings of the American Control Conference, pp. 11–13. New York City (July 2007)

  4. Tanaka, K., Yosihida, H., Ohtake, H., Wang, H.: A sum of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 911–922 (2009)

    Article  Google Scholar 

  5. Ma, H.J., Yang, G.H.: Fault-tolerant control synthesis for a class of nonlinear systems: sum of squares optimization approac. Int. J. Robust Nonlinear Control 19, 591–610 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guelton, K., Manamanni, N., Duong, C.C., Koumba-Emianiwe, D.L.: Sum of squares stability analysis of Takagi-Sugeno systems based on multiple polynomial Lyapunov functions. Int. J. Fuzzy Syst. 15(1), 1–8 (2013)

    MathSciNet  Google Scholar 

  7. Tanaka, K., Yosihida, H., Ohtake, H., Wang, H.: Stabilization of polynomial fuzzy systems via a sum of squares approach. In: 22nd IEEE International Symposium on Intelligent Control Part of IEEE Multi-conference on Systems and Control, pp. 1–3. Singapore (October 2007)

  8. Seo, T., Ohtake, H., Tanaka, K., Chen, Y., Wang, H.: A polynomial observer design for a wider class of polynomial fuzzy systems. In: IEEE International Conference on Systems, June 27–30 2011

  9. Li, W., Wang, W.: Guaranteed cost control for polynomial fuzzy time delay systems by sum of squares approach. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing (2012)

  10. Lam, H.K., Narimani, M., Li, H., Liu, H.: Stability analysis of polynomial-fuzzy-model-based control systems using switching polynomial Lyapunov function. IEEE Trans. Fuzzy Syst. 21(5), 800–813 (2013)

    Article  Google Scholar 

  11. Lam, H.K., Lo, J.C.: Output regulation of polynomial-fuzzy-model-based control systems. IEEE Trans. Fuzzy Syst. 21(2), 262–274 (2013)

    Article  Google Scholar 

  12. Cao, K., Gao, X.Z., Vasilakos, T., Pedrycz, W.: Analysis of stability and robust stability of polynomial fuzzy model-based control systems using a sum of squares approach. Soft Comput. 18, 433–442 (2014)

    Article  MATH  Google Scholar 

  13. Chen, Y.J., Tanaka, M., Tanaka, K., Wang, H.O.: Stability analysis and region-of-attraction estimation using piecewise polynomial Lyapunov functions: polynomial fuzzy model approach. IEEE Trans. Fuzzy Syst. 23(2), 1314–1322 (2014)

    Google Scholar 

  14. Benzaouia, A., Gounane, S., Tadeo, F., El Hajjaji, A.: Stabilization of saturated discrete-time fuzzy systems. Int. J. Control Autom. Syst. 9(3), 581–587 (2011)

    Article  Google Scholar 

  15. Sun, C.H., Wang, W.J., Lin, W.W.: Linear control and parallel distributed fuzzy control design for T-S fuzzy time-delay system. Int. J. Fuzzy Syst. 9(4), 229–235 (2007)

    MathSciNet  Google Scholar 

  16. Gassara, H., El Hajjaji, A., Chaabane, M.: Robust control of T-S fuzzy systems with time-varying delay using new approach. Int. J. Robust Nonlinear Control 20, 1566–1578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, B., Liu, X.: Delay-dependent robust \(H_\infty\) control for T-S fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 13(9), 238–249 (2005)

    Article  Google Scholar 

  18. Gassara, H., El Hajjaji, A., Chaabane, M.: Observer-based robust \(H_\infty\) reliable control for uncertain T-S fuzzy systems with state time delay. IEEE Trans. Fuzzy Syst. 18(6), 1027–1040 (2010)

    Article  MATH  Google Scholar 

  19. Li, H., Gao, Y., Wu, L., Lam, H.K.: Fault detection for T-S fuzzy time-delay systems: delta operator and input-output methods. IEEE Trans. Cybern. 45(2), 229–241 (2015)

    Article  Google Scholar 

  20. Lam, H.K., Chan, E.W.S.: Stability analysis of sampled-data fuzzy-model-based control systems. Int. J. Fuzzy Syst. 10(2), 129–135 (2008)

    MathSciNet  Google Scholar 

  21. Li, H., Pan, Y., Zhou, Q.: Filter design for interval type-2 fuzzy systems with D stability constraints under A unified frame. IEEE Trans. Fuzzy Syst. 23(3), 719–725 (2015)

    Article  Google Scholar 

  22. Li, H., Wu, C., Shi, P., Gao, Y.: Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans. Cybern. pp. 2168–2267 (2015)

  23. Li, H., Wu, C., Wu, L., Lam, H.K., Gao, Y.: Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. (2015). doi:10.1109/TCYB.2015.2413134

  24. Zhao, Y., Ou, Y., Zhang, L., Gao, H.: \(H_\infty\) control of uncertain seat suspension systems subject to input delay and actuator saturation. In: 48th IEEE Conference on Decision and Control, pp. 5164–5169 (2009)

  25. Liu, P.L.: Stabilization criteria for neutral time-delay system with saturating actuators. J. Frankl. Inst. 347(8), 1577 (2010)

    Article  MATH  Google Scholar 

  26. Gassara, H., EL Hajjaji, A., Benzaouia, A., Chaabane, M.: \(H_\infty\) control for time-delay T-S fuzzy systems with actuator saturation. In: 20th Mediterranean Conference on Control and Automation, IEEE-MED’12, Barcelona, July 27–30 2012

  27. da Silva, J.M.G., Seuret, A., Fridman, E., Richard, J.P.: Stabilization of neutral systems with saturating control inputs. Int. J. Syst. Sci. 42(7), 1093–1103 (2012)

    Article  MATH  Google Scholar 

  28. Hu, T., Lin, Z., Chen, B.M.: Analysis and design for discrete-time linear systems subject to actuator saturation. Syst. Control Lett. 45, 97–112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A., Anderson1, J., Valmorbida, G.: SOSTOOLS: sum of squares optimization toolbox for MATLAB, Version 3.00, California Institute of Technology, Pasadena (2013)

  30. Sturm, J.F.: Using SeDuMi 1.02: a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1), 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tarbouriech, S., Da Silva Jr, J.M.G., Garcia, G.: Delay- depend anti-windup strategy for linear systems with saturating inputs and delayed outputs. Int. J. Robust Nonlinear Control 14, 665–682 (2004)

    Article  MATH  Google Scholar 

  32. Benzaouia, A.: Saturated Switching Systems. Springer Science and Business Media, New York (2012)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El Hajjaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gassara, H., El Hajjaji, A. & Chaabane, M. Control of Time Delay Polynomial Fuzzy Model Subject to Actuator Saturation. Int. J. Fuzzy Syst. 18, 763–772 (2016). https://doi.org/10.1007/s40815-015-0133-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0133-1

Keywords

Navigation