Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

The Fréchet Topp Leone-G Family of Distributions: Properties, Characterizations and Applications

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

A new family of continuous distributions which ensure model flexiblity, is introduced based on the Fréchet distribution and Topp Leone-G family. Two special sub-models of the new family are discussed. We provide some distributional properties of this family in the general setting such as the series expansions of density, moments, generating function, stress strength model, Rényi and Shannon entropies, probability weighted moments and order statistics. Certain characterizations of the proposed family are presented. The maximum likelihood estimates and the observed information matrix are obtained for the model parameters. We assess the performance of the maximum likelihood estimators by means of a graphical simulation study. The potentiality of the new class is shown via two applications to real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Afify AZ, Altun E, Alizadeh M, Ozel G, Hamedani GG (2017) The odd exponentiated half-logistic-G family: properties, characterizations and applications. Chil J Stat 8:65–91

    Google Scholar 

  2. Afify AZ, Nofal ZM, Yousof HM, El Gebaly YM, Butt NS (2015) The transmuted Weibull Lomax distribution: properties and application. Pak J Stat Oper Res 11:135–152

    Article  Google Scholar 

  3. Afify AZ, Yousof HM, Nadarajah S (2017) The beta transmuted-H family of distributions: properties and applications. Stat Interference 10:505–520

    Article  Google Scholar 

  4. Alizadeh M, Altun E, Afify AZ, Ozel G (2018) The extended odd Weibull-G family: properties and applications. Commun Fac Sci Univ Ank Ser A1 Math Stat 68:161–186

    Google Scholar 

  5. Alizadeh M, Cordeiro GM, Nascimento ADC, Lima MDS, Ortega EMM (2016) Odd-Burr generalized family of distributions with some applications. J Stat Comput Simul 83:326–339

    Google Scholar 

  6. Alizadeh M, Tahmasebi S, Haghbin H (2018) The exponentiated odd log-logistic family of distributions: properties and applications. J Stat Model Theory Appl 1:1–24

    Google Scholar 

  7. Alizadeh M, Yousof HM, Afify AZ, Cordeiro GM, Mansoor M (2018) The complementary generalized transmuted Poisson-G family of distributions. Austrian J Stat 47:54–71

    Article  Google Scholar 

  8. Al-Shomrani A, Arif O, Shawky K, Hanif S, Shahbaz MQ (2016) Topp-Leone family of distributions: some properties and application. Pak J Stat Oper Res 12:443–451

    Article  Google Scholar 

  9. Alzaatreh A, Lee C, Famoye F (2013) A new method for generating families of continuous distributions. Metron 71:63–79

    Article  Google Scholar 

  10. Brito E, Cordeiro GM, Yousof HM, Alizadeh M, Silva GO (2017) Topp-Leone odd log-logistic family of distributions. J Stat Comput Simul 87:3040–3058

    Article  Google Scholar 

  11. Cordeiro GM, Ortega EMM, Popović BV, Pescim RR (2014) The Lomax generator of distributions: properties, minification process and regression model. Appl Math Comput 247:465–486

    Google Scholar 

  12. Glanzel W (1987) A characterization theorem based on truncated moments and its application to some distribution families. In: Mathematical statistics and probability theory (Bad Tatzmannsdorf, 1986), vol 7. Reidel, Dordrecht, pp 75–84

  13. Glanzel W (1990) Some consequences of a characterization theorem based on truncated moments. Stat J Theor Appl Stat 21:613–618

    Google Scholar 

  14. Hamedani GG (2013) On certain generalized gamma convolution distributions II, Technical Report. 484, 2013, MSCS, Marquette University

  15. Hamedani GG, Yousof HM, Rasekhi M, Alizadeh M, Najibi SM (2018) Type I general exponential class of distributions. Pak J Stat Oper Res 14:39–55

    Article  Google Scholar 

  16. Korkmaz MÇ, Alizadeh M, Yousof HM, Butt NS (2018) The generalized odd Weibull generated family of distributions: statistical properties and applications. Pak J Stat Oper Res 14:541–556

    Article  Google Scholar 

  17. Korkmaz MÇ, Altun E, Yousof HM, Hamedani GG (2019) The odd power Lindley generator of probability distributions: properties, characterizations and regression modeling. Int J Stat Probab 8:70–89

    Article  Google Scholar 

  18. Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New York

    Book  Google Scholar 

  19. Lemonte A, Cordeiro GM (2013) An extended Lomax distribution. Statistics 47:800–816

    Article  Google Scholar 

  20. Mansour MM, Abd Elrazik EM, Afify AZ, Ahsanullah M, Altun E (2019) The transmuted transmuted-G family: properties and applications. J Nonlinear Sci Appl 12:217–229

    Article  Google Scholar 

  21. Mead ME (2016) On five-parameter Lomax distribution: properties and applications. Pak J Stat Oper Res 12:185–199

    Article  Google Scholar 

  22. Nassar M, Kumar D, Dey S, Cordeiro GM, Afify AZ (2019) The Marshall-Olkin alpha power family of distributions with applications. J Comput Appl Math 351:41–53

    Article  Google Scholar 

  23. Proschan F (1963) Theoretical explanation of observed decreasing failure rate. Technometrics 5:375–383

    Article  Google Scholar 

  24. Reyad H, Jamal F, Othman S, Hamedani GG (2018) The transmuted Gompertz-G family of distributions: properties and applications. Tbilisi Math J 11:47–67

    Article  Google Scholar 

  25. Reyad H, Jamal F, Othman S, Hamedani GG (2018) The transmuted odd Lindley-G family of distributions. Asian J Probab Stat 1:1–25

    Article  Google Scholar 

  26. Reyad H, Alizadeh M, Jamal F, Othman S (2018) The Topp Leone odd Lindley-G family of distributions: properties and applications. J Stat Manag Syst 21:1273–1297

    Google Scholar 

  27. Tahir MH, Cordeiro GM, Mansoor M, Zubair M (2015) The Weibull-Lomax distribution: properties and applications. Hacettepe J Math Stati 44:461–480

    Google Scholar 

  28. Yousof HM, Afify AZ, Hamedani GG, Aryal G (2017) The Burr X generator of distributions for lifetime data. J Stat Theory Appl 16:288–305

    Google Scholar 

  29. Yousof HM, Rasekhi M, Altun E, Alizadeh M (2019) The extended odd Fréchet family of distributions: properties, applications and regression modeling. Int J Math Comput 30:1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham Reyad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Theorem 1

Let \( (\varOmega \,,\,\,F,\,\,{\rm P}) \) be a given probability space and let \( H = [a,b] \) be an interval for some \( d < b \) \( (a = - \infty ,\,\,b = \infty \,\,{\text{might}}\,\,{\text{as}}\,\,{\text{well}}\,\,{\text{be}}\,\,{\text{allowed)}} . \) Let \( X:\varOmega \to H \) be a continuous random variable with the distribution function \( F \) and let \( q_{1} \) and \( q_{2} \) be two real functions defined on \( H \) such that

$$ E\left[ {\left. {q_{2} (X)} \right|X \ge x} \right] = E\left[ {\left. {q_{1} (X)} \right|X \ge x} \right]\xi (x),\,\,\,x \in H, $$

is defined with some real function \( \xi . \) Assume that \( q_{1} ,\,q_{2} \in C^{1} (H),\,\,\xi \in C^{2} (H) \), \( F \) is twice continuously differentiable and strictly monotone function on the set \( H. \) Finally, assume that the equation \( \xi \,q_{1} = q_{2} \) has no real solution in the interior of \( H. \) Then \( F \) is uniquely determined by the functions \( q_{1} ,\,\,q_{2} \) and \( \xi , \) particularly

$$ F(x) = \int_{a}^{x} {C\left| {\frac{{\xi^{\prime}(u)}}{{\xi (u)\,q_{1} (u) - q_{2} (u)}}} \right|\exp \left( { - s(u)} \right)\,\,du\,,} $$

where the function \( s \) is a solution of the differential equation \( s^{\prime} = \frac{{\xi^{\prime}q_1}}{q_{1} - q_{2}}\) and \( C \) is the normalization constant, such that \( \int_{H} {dF = 1.} \)

We like to mention that this kind of characterization based on the ratio of truncated moments is stable in the sense of weak convergence (see [13]), in particular, let us assume that there is a sequence \( \left\{ {X_{n} } \right\} \) of random variables with distribution function \( \left\{ {F_{n} } \right\} \) such that the functions \( q_{1n} ,\,\,q_{2n} \) and \( \xi_{n} \,\,(n \in N) \) satisfy the conditions of Theorem 1 and let \( q_{1n} \to q_{1} ,\,\,q_{2n} \to q_{2} \) for some continuously differentiable real functions \( q_{1} \) and \( q_{2} . \) Let, finally, \( X \) be a random variable with distribution \( F. \) Under the condition that \( q_{1n} (X) \) and \( q_{2n} (X) \) are uniformly integrable and the family \( \left\{ {F_{n} } \right\} \) is relatively compact, the sequence \( X_{n} \) converges to \( X \) in distribution if and only if \( \xi_{n} \) converges to \( \xi , \) where

$$ \xi (x) = \frac{{E\left[ {\left. {q_{2} (X)} \right|X \ge x} \right]}}{{E\left[ {\left. {q_{1} (X)} \right|X \ge x} \right]}} $$

This stability theorem makes sure that the convergence of distribution function is reflected by corresponding convergence of the function \( q_{1} ,\,\,q_{2} \) and \( \xi , \) respectively. It guarantees, for instance, the convergence of characterization on the Wald distribution to that of the Levy-Smirrnov distribution if \( \alpha \to \,\,\infty . \)

A further consequence of the stability property of Theorem 1 is the application of this theorem to special tasks in statistical practice such as the estimation of the parameters of discrete distributions. For such purpose, the functions \( q_{1} ,\,\,q_{2} \) and, specially, \( \xi \) should be as simple as possible. Since the function triplet is not uniquely determined it is often possible to choose \( \xi \) as a linear function. Therefore, it is worth analyzing some special cases which helps to find new characterizations reflecting the relationship between individual continuous univariate distributions and appropriate in other areas of statistics.

In some case, one can take \( q_{1} \equiv 1 \) which reduces the condition of Theorem 1 to \( E\left[ {\left. {q_{2} (X)} \right|X \ge x} \right] = \xi (x),\,\,\,x \in H. \) We, however, believe that employing three functions \( q_{1} ,\,\,q_{2} \) and \( \xi \) will enhance the domain of applicability of Theorem 1.

Appendix B

The elements of the observed information matrix are given below

$$ J_{\alpha \alpha } = \frac{ - n}{{\alpha^{2} }} - \beta^{\alpha } \left( {\log \left( \beta \right)} \right)^{2} \sum\limits_{i = 1}^{n} {\left( {\mu_{i}^{ - \lambda } - 1} \right),} $$
$$ J_{\alpha \beta } = \frac{n}{\beta } - \beta^{\alpha - 1} \left( {1 + \alpha \log \left( \beta \right)} \right)\sum\limits_{i = 1}^{n} {\left( {\mu_{i}^{ - \lambda } - 1} \right),} $$
$$ J_{\alpha \lambda } = - \sum\limits_{i = 1}^{n} {\log \left( {\mu_{i} } \right)} - \sum\limits_{i = 1}^{n} {\left\{ {\frac{{\mu_{i}^{\lambda } \log \left( {\mu_{i} } \right)}}{{1 - \mu_{i}^{\lambda } }}} \right\}} + \beta^{\alpha } \log \left( \beta \right)\sum\limits_{i = 1}^{n} {\left\{ {\frac{{\log \left( {\mu_{i} } \right)}}{{\mu_{i}^{\lambda } }}} \right\},} $$
$$ J_{\alpha \phi } = - 2\lambda \sum\limits_{i = 1}^{n} {\left( {\frac{{\bar{G}(x_{i} ,\phi )G^{{\prime }} (x_{i} ,\phi )}}{{\mu_{i} }}} \right)} + 2\lambda \sum\limits_{i = 1}^{n} {\left( {\frac{{\bar{G}(x_{i} ,\phi )G^{{\prime }} (x_{i} ,\phi )\mu_{i}^{\lambda - 1} }}{{1 - \mu_{i}^{\lambda } }}} \right)} + 2\beta^{\alpha } \lambda \sum\limits_{i = 1}^{n} {\left( {\frac{{\bar{G}(x_{i} ,\phi )G^{{\prime }} (x_{i} ,\phi )}}{{\mu_{i}^{\lambda + 1} }}} \right),} $$
$$ J_{\beta \beta } = \frac{ - n\alpha }{{\beta^{2} }} - \alpha \left( {\alpha - 1} \right)\beta^{\alpha - 2} \sum\limits_{i = 1}^{n} {\left( {\mu_{i}^{ - \lambda } - 1} \right)} , $$
$$ J_{\beta \lambda } = \alpha \beta^{\alpha - 1} \sum\limits_{i = 1}^{n} {\left\{ {\frac{{\log \left( {\mu_{i} } \right)}}{{\mu_{i}^{\lambda } }}} \right\},} $$
$$ J_{\beta \phi } = 2\lambda \alpha \beta^{\alpha - 1} \sum\limits_{i = 1}^{n} {\left( {\mu_{i}^{ - \lambda } - 1} \right)} , $$
$$ J_{\lambda \lambda } = \frac{ - n}{{\lambda^{2} }} - \left( {\alpha - 1} \right)\sum\limits_{i = 1}^{n} {\left( {\frac{{\mu_{i}^{\lambda } \left( {\log \left( {\mu_{i} } \right)} \right)^{2} }}{{\left( {1 - \mu_{i}^{\lambda } } \right)^{2} }}} \right)} - \beta^{\alpha } \sum\limits_{i = 1}^{n} {\left( {\frac{{\left( {\log \left( {\mu_{i} } \right)} \right)^{2} }}{{\mu_{i}^{\lambda } }}} \right)} , $$
$$ \begin{aligned} J_{\lambda \phi } & = - 2\alpha \sum\limits_{i = 1}^{n} {\left( {\frac{{\bar{G}(x_{i} ,\phi )G^{{\prime }} (x_{i} ,\phi )}}{{\mu_{i} }}} \right)} - 2\lambda \left( {\alpha - 1} \right)\sum\limits_{i = 1}^{n} {\left( {\frac{{\bar{G}(x_{i} ,\phi )G^{{\prime }} (x_{i} ,\phi )\mu_{i}^{\lambda - 1} \left( {1 + \log \left( {\mu_{i} } \right)} \right)}}{{\left( {1 - \mu_{i}^{\lambda } } \right)^{2} }}} \right)} \\ & \quad + 2\beta^{\alpha } \lambda \sum\limits_{i = 1}^{n} {\left( {\frac{{\bar{G}(x_{i} ,\phi )G^{{\prime }} (x_{i} ,\phi )\left( {1 + \lambda \log \left( {\mu_{i} } \right)} \right)}}{{\mu_{i}^{2} }}} \right),} \\ \end{aligned} $$
$$ \begin{aligned} J_{\lambda \phi \phi } & = \sum\limits_{i = 1}^{n} {\left( {\frac{{g(x_{i} ,\phi )g^{{\prime \prime }} (x_{i} ,\phi ) - g^{{\prime }} (x_{i} ,\phi )^{2} }}{{g(x_{i} ,\phi )^{2} }}} \right)} - \sum\limits_{i = 1}^{n} {\left( {\frac{{\bar{G}(x_{i} ,\phi )G^{{\prime \prime }} (x_{i} ,\phi ) + G^{{\prime }} (x_{i} ,\phi )^{2} }}{{\bar{G}(x_{i} ,\phi )^{2} }}} \right)} \\ & \quad - 2\left( {\lambda \alpha + 1} \right)\sum\limits_{i = 1}^{n} {\left( {\frac{{\bar{G}(x_{i} ,\phi )G^{{\prime \prime }} (x_{i} ,\phi )\mu_{i} - G^{{\prime }} (x_{i} ,\phi )^{2} \left( {1 + \bar{G}(x_{i} ,\phi )^{2} } \right)}}{{\mu_{i}^{2} }}} \right)} \\ & \quad - 2\lambda \left( {\alpha - 1} \right)\sum\limits_{i = 1}^{n} {\left( {\frac{{\mu_{i}^{\lambda - 2} \left\{ \begin{aligned} \left( {1 - \mu_{i}^{\lambda } } \right)\left[ {2(\lambda - 1)\bar{G}(x_{i} ,\phi )^{2} G^{\prime}{(x_{i}, \phi)}^{2}+ \mu_{i} \left( {\bar{G}(x_{i} ,\phi )G^{{\prime \prime }} (x_{i} ,\phi ) - G^{{\prime }} (x_{i} ,\phi )^{2} } \right)} \right] \hfill \\ + 2\lambda \mu_{i}^{\lambda } \bar{G}(x_{i} ,\phi )^{2} G^{{\prime }} (x_{i} ,\phi )^{2} \hfill \\ \end{aligned} \right\}}}{{\left( {1 - \mu_{i}^{\lambda } } \right)^{2} }}} \right)} \\ & \quad - 2\lambda \beta^{\alpha } \sum\limits_{i = 1}^{n} {\left( {\frac{{\bar{G}(x_{i} ,\phi )G^{{\prime \prime }} (x_{i} ,\phi )\mu_{i} - G^{{\prime }} (x_{i} ,\phi )^{2} \left( {1 + 2(\lambda + 1)\bar{G}(x_{i} ,\phi )^{2} } \right)}}{{\mu_{i}^{\lambda + 2} }}} \right)} , \\ \end{aligned} $$

where, \( g^{{\prime \prime }} (x_{i} ,\phi ) = {{\partial^{2} g(x_{i} ,\phi )} \mathord{\left/ {\vphantom {{\partial^{2} g(x_{i} ,\phi )} {\partial \phi^{2} }}} \right. \kern-0pt} {\partial \phi^{2} }}\;{\text{and}}\;G^{{\prime \prime }} (x_{i} ,\phi ) = {{\partial^{2} G(x_{i} ,\phi )} \mathord{\left/ {\vphantom {{\partial^{2} G(x_{i} ,\phi )} {\partial \phi^{2} }}} \right. \kern-0pt} {\partial \phi^{2} }}. \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyad, H., Korkmaz, M.Ç., Afify, A.Z. et al. The Fréchet Topp Leone-G Family of Distributions: Properties, Characterizations and Applications. Ann. Data. Sci. 8, 345–366 (2021). https://doi.org/10.1007/s40745-019-00212-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-019-00212-9

Keywords

Navigation