Abstract
Recent work linking deep neural networks and dynamical systems opened up new avenues to analyze deep learning. In particular, it is observed that new insights can be obtained by recasting deep learning as an optimal control problem on difference or differential equations. However, the mathematical aspects of such a formulation have not been systematically explored. This paper introduces the mathematical formulation of the population risk minimization problem in deep learning as a mean-field optimal control problem. Mirroring the development of classical optimal control, we state and prove optimality conditions of both the Hamilton–Jacobi–Bellman type and the Pontryagin type. These mean-field results reflect the probabilistic nature of the learning problem. In addition, by appealing to the mean-field Pontryagin’s maximum principle, we establish some quantitative relationships between population and empirical learning problems. This serves to establish a mathematical foundation for investigating the algorithmic and theoretical connections between optimal control and deep learning.
Similar content being viewed by others
References
Andersson, D., Djehiche, B.: A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63(3), 341–356 (2011)
Arora, S., Ge, R., Neyshabur, B., Zhang, Y.: Stronger generalization bounds for deep nets via a compression approach. arXiv preprint arXiv:1802.05296 (2018)
Athans, M., Falb, P.L.: Optimal Control: An Introduction to the Theory and Its Applications. Courier Corporation, Chelmsford (2013)
Bellman, R.: Dynamic Programming. Courier Corporation, Chelmsford (2013)
Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)
Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory, vol. 101. Springer, Berlin (2013)
Boltyanskii, V.G., Gamkrelidze, R.V., Pontryagin, L.S.: The Theory of Optimal Processes. I. The Maximum Principle. TRW Space Technology Labs, Los Angeles, CA (1960)
Bongini, M., Fornasier, M., Rossi, F., Solombrino, F.: Mean-field pontryagin maximum principle. J. Optim. Theory Appl. 175(1), 1–38 (2017)
Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control, vol. 2. American Institute of Mathematical Sciences, Springfield (2007)
Bryson, A.E.: Applied Optimal Control: Optimization, Estimation and Control. CRC Press, Boca Raton (1975)
Buckdahn, R., Djehiche, B., Li, J.: A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64(2), 197–216 (2011)
Caponigro, M., Fornasier, M., Piccoli, B., Trélat, E.: Sparse stabilization and control of alignment models. Math. Models Methods Appl. Sci. 25(03), 521–564 (2015)
Cardaliaguet, P.: Notes on mean field games (2010) (Unpublished note)
Carmona, R., Delarue, F.: Forward–backward stochastic differential equations and controlled McKean–Vlasov dynamics. Ann. Probab. 43(5), 2647–2700 (2015)
Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., Holtham, E.: Reversible architectures for arbitrarily deep residual neural networks. In: Proceedings of AAAI Conference on Artificial Intelligence (2018)
Chang, B., Meng, L., Haber, E., Tung, F., Begert, D.: Multi-level residual networks from dynamical systems view. In: Proceedings of International Conference on Learning Representations (2018)
Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. arXiv preprint arXiv:1806.07366 (2018)
Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)
Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)
Crandall, M.G., Lions, P.-L.: Hamilton–Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions. J. Funct. Anal. 62(3), 379–396 (1985)
Crandall, M.G., Lions, P.-L.: Hamilton–Jacobi equations in infinite dimensions. II. Existence of viscosity solutions. J. Funct. Anal. 65(3), 368–405 (1986)
Crandall, M.G., Lions, P.-L.: Hamilton–Jacobi equations in infinite dimensions, III. J. Funct. Anal. 68(2), 214–247 (1986)
Dziugaite, G.K., Roy, D.M.: Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data. arXiv preprint arXiv:1703.11008 (2017)
Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society, Providence (1998)
Fornasier, M., Solombrino, F.: Mean-field optimal control. ESAIM Control Optim. Calc. Var. 20(4), 1123–1152 (2014)
Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001)
Gangbo, W., Święch, A.: Existence of a solution to an equation arising from the theory of mean field games. J. Differ. Equ. 259(11), 6573–6643 (2015)
Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of International Conference on Machine Learning (2011)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Guéant, O., Lasry, J.-M., Lions, P.-L.: Mean Field Games and Applications. Paris-Princeton Lectures on Mathematical Finance, pp. 205–266. Springer, Berlin (2011)
Haber, E., Ruthotto, L.: Stable architectures for deep neural networks. Inverse Probl. 34(1), 014004 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop Mckean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of International Conference on Machine Learning (2015)
Jastrzebski, S., Arpit, D., Ballas, N., Verma, V., Che, T., Bengio, Y.: Residual connections encourage iterative inference. In: Proceedings of International Conference on Learning Representations (2018)
Keller, H.: Approximation methods for nonlinear problems with application to two-point boundary value problems. Math. Comput. 29(130), 464–474 (1975)
Kelley, W.G., Peterson, A.C.: The Theory of Differential Equations: Classical and Qualitative. Springer, Berlin (2010)
Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)
Lauriere, M., Pironneau, O.: Dynamic programming for mean-field type control. C. R. Math. 352(9), 707–713 (2014)
LeCun, Y.: A theoretical framework for back-propagation. In: The Connectionist Models Summer School, pp. 21–28 (1988)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Li, F.-F., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)
Li, Q., Chen, L., Tai, C., E, W.: Maximum principle based algorithms for deep learning. J. Mach. Learn. Res. 18, 1–29 (2018)
Li, Q., Hao, S.: An optimal control approach to deep learning and applications to discrete-weight neural networks. In: Proceedings of International Conference on Machine Learning (2018)
Li, Z., Shi, Z.: Deep residual learning and PDEs on manifold. arXiv preprint arXiv:1708.05115 (2017)
Liberzon, D.: Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, Princeton (2012)
Lions, P.-L.: Cours au collège de france: Théorie des jeuxa champs moyens (2012)
Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. arXiv preprint arXiv:1710.10121 (2017)
Neyshabur, B., Bhojanapalli, S., McAllester, D., Srebro, N.: Exploring generalization in deep learning. In: Proceedings of advances in neural information processing systems (2017)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
Pham, H., Wei, X.: Dynamic programming for optimal control of stochastic Mckean–Vlasov dynamics. SIAM J. Control Optim. 55(2), 1069–1101 (2017)
Pham, H., Wei, X.: Bellman equation and viscosity solutions for mean-field stochastic control problem. ESAIM Control Optim. Calc. Var. 24(1), 437–461 (2018)
Pinelis, I., Sakhanenko, A.: Remarks on inequalities for large deviation probabilities. Theory Probab. Appl. 30(1), 143–148 (1986)
Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987)
Sonoda, S., Murata, N.: Double continuum limit of deep neural networks. In: ICML Workshop on Principled Approaches to Deep Learning (2017)
Stegall, C.: Optimization of functions on certain subsets of Banach spaces. Math. Ann. 236(2), 171–176 (1978)
Subbotina, N.: The method of characteristics for Hamilton–Jacobi equations and applications to dynamical optimization. J. Math. Sci. 135(3), 2955–3091 (2006)
Sznitman, A.S.: Topics in propagation of chaos. In: Hennequin, P.-L. (ed.) Ecole d’été de probabilités de saintflour xix—1989, pp. 165–251. Springer, Berlin (1991)
Veit, A., Wilber, M. J, Belongie, S.: Residual networks behave like ensembles of relatively shallow networks. In: Advances in Neural Information Processing Systems, pp. 550–558 (2016)
E, W.: A proposal on machine learning via dynamical systems. Commun. Math. Stat. 5(1), 1–11 (2017)
Acknowledgements
The work of W. E and J. Han is supported in part by ONR Grant N00014-13-1-0338 and Major Program of NNSFC under Grant 91130005. Q. Li is supported by the Agency for Science, Technology and Research, Singapore.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
E, W., Han, J. & Li, Q. A mean-field optimal control formulation of deep learning. Res Math Sci 6, 10 (2019). https://doi.org/10.1007/s40687-018-0172-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s40687-018-0172-y