Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A review on the application of autonomous and intelligent robotic devices in medical rehabilitation

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Robot-assisted rehabilitation is an exciting field which aims to incorporate relevant developments in robotics related to rehabilitation with the intention of defining new methodologies for intervening problems related to muscular, neuromuscular, and osseous diseases. In this study, a systematic and comprehensive literature analysis is conducted to identify the contribution of artificial intelligence applied on robotic devices for motor rehabilitation, highlighting its relation with the rehabilitation cycle, and clarifying the prospective research directions in the development of more autonomous rehabilitation procedures. Considering this main goal, a summarized definition of general rehabilitation techniques is established. Then, such definition is particularized for technological-aided rehabilitating medical treatments implementing artificial intelligence methods, identifying the sections included within the process and the associated interaction degrees. This generic definition is analyzed using the current literature in muscle-skeletal treatment robotics as reference framework. This analysis considers the components and sections included in rehabilitation sequence. This review also describes a more in-depth description of the principal categories for classifying therapeutic robotic devices, including descriptions of the main past and present outcomes for each class of medical robotics for rehabilitation. The existing challenges and open options to develop more efficient autonomous (with the application of diverse artificial intelligence approaches) rehabilitating procedures are discoursed. Besides, taking into account this comprehensive review, a sequence of technical requires which must be taken into consideration when designing, developing and implementing autonomous robotic devices aimed to contribute to rehabilitation medical systems are deliberated. A brief description of the application of artificial intelligence and autonomous medical rehabilitation treatment is analyzed in terms of the exciting technical challenges and the ethical compromises that such a treatment option implies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brady M (1985) Artificial intelligence and robotics. Artif intell 26(1):79–121

    Article  Google Scholar 

  2. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2(4):230–243

    Article  Google Scholar 

  3. Toigo M, Flück M, Riener R (2017) Robot-assisted assessment of muscle strength. J NeuroEng Rehabil, 14(103)

  4. Mahdieh B, Hamed MS, Poorya J, Mojtaba Y (2016) A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol 11(4):263–280

    Google Scholar 

  5. Islam MR, Christopher S, Rahman MH, Fareh R (2017) A brief review on robotic exoskeletons for upper extremity rehabilitation to find the gap between research porotype and commercial type. Adv Robot Autom 6(3):2

    Article  Google Scholar 

  6. Xie S et al (2016) Advanced robotics for medical rehabilitation. Springer Tracts Adv Robotics 108:1–357

    Article  Google Scholar 

  7. Lo Albert C, Peter G, Krebs Hermano I, Volpe Bruce T, Bever Christopher T, Duncan Pamela W, Ringer Robert J, Wagner Todd H, Richards Lorie G, Bravata Dawn M et al (2009) Multicenter randomized trial of robot-assisted rehabilitation for chronic stroke: methods and entry characteristics for va robotics. Neurorehabil Neural Repair 23(8):775–783

    Article  Google Scholar 

  8. Freeman Chris T, Rogers E, Hughes AM, Burridge JH, Meadmore KL (2012) Iterative learning control in health care: electrical stimulation and robotic-assisted upper-limb stroke rehabilitation. IEEE Control Syst Magaz 32(1):18–43

    Article  MathSciNet  MATH  Google Scholar 

  9. Chung BPH (2017) Effectiveness of robotic-assisted gait training in stroke rehabilitation: a retrospective matched control study. Hong Kong Physiother J 36:10–16

    Article  Google Scholar 

  10. Penders J (2014) Robotics horizon

  11. Jezernik S, Colombo G, Keller T, Frueh H, Morari M (2003) Robotic orthosis lokomat: arehabilitation and research tool. Neuromodulation Technol Neural Interface 6(2):108–115

    Article  Google Scholar 

  12. Joseph H, Diane N, Marlena P, Kathy B, Campbell Donielle D, Kahn Jennifer H, George HT (2009) Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil Neural Repair 23(1):5–13

    Article  Google Scholar 

  13. Díaz I, Gil JJ, Sánchez E (2011) Lower-limb robotic rehabilitation: literature review and challenges. J Robot

  14. Tingfang Y, Marco C, Maria OC, Nicola V (2015) Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot Auton Syst 64:120–136

    Article  Google Scholar 

  15. Jesus Tiago S, Bright Felicity A, Pinho Cátia S, Christina P, Kayes Nicola M, Cott Cheryl A (2021) Scoping review of the person-centered literature in adult physical rehabilitation. Disabil Rehabil 43(11):1626–1636

    Article  Google Scholar 

  16. Wade D (2006) Why physical medicine, physical disability and physical rehabilitation? we should abandon cartesian dualism

  17. Rimmer JH (1999) Health promotion for people with disabilities: the emerging paradigm shift from disability prevention to prevention of secondary conditions. Phys Ther 79(5):495–502

    Article  Google Scholar 

  18. Leamy M, Bird V, Le Boutillier C, Williams J, Slade M (2011) Conceptual framework for personal recovery in mental health: systematic review and narrative synthesis. Br J Psychiatr 199(6):445–452

    Article  Google Scholar 

  19. Wade D (2015) Rehabilitation–a new approach. part two: the underlying theories

  20. Chua KSG, Kuah CWK (2017) Innovating with rehabilitation technology in the real world: promises, potentials, and perspectives. Am J Phys Med Rehabil 96(10 Suppl 1):S150

    Article  Google Scholar 

  21. Laparidou D, Curtis F, Akanuwe J, Khaled Goher A, Siriwardena N, Kucukyilmaz A (2021) Patient, carer, and staff perceptions of robotics in motor rehabilitation: a systematic review and qualitative meta-synthesis. J Neuroeng Rehabil 18(1):1–24

    Article  Google Scholar 

  22. SPARC Robotics (2016) Robotics 2020 multi-annual roadmap for robotics in Europe. SPARC Robotics, EU-Robotics AISBL, The Hauge, The Netherlands, accessed Feb, 5:2018

  23. Oña ED, Cano-de la Cuerda R, Sánchez-Herrera P, Balaguer C, Jardón A (2018) A review of robotics in neurorehabilitation: towards an automated process for upper limb. J Healthcare Eng

  24. Thacker Paul D (2005) Physician-robot makes the rounds. JAMA 293(2):150

    Article  Google Scholar 

  25. American Psychiatric Association et al (2013) Diagnostic and statistical manual of mental disorders. BMC Med, 17:133–137

  26. Eftring H, Boschian K (1999) Technical results from manus user trials. Proc. ICORR 99:136–141

    Google Scholar 

  27. Edward Colgate J (1993) Robust impedance shaping telemanipulation. IEEE Trans Robot Autom 9(4):374–384

    Article  Google Scholar 

  28. Mitra P, Niemeyer G (2008) Model-mediated telemanipulation. Int J Robot Res 27(2):253–262

    Article  Google Scholar 

  29. Schurr MO, Buess G, Neisius B, Voges U (2000) Robotics and telemanipulation technologies for endoscopic surgery. Surg Endosc 14(4):375–381

    Article  Google Scholar 

  30. Dan D, Cooper Rory A (2005) Electric powered wheelchairs. IEEE Control Syst Mag 25(2):22–34

    Article  Google Scholar 

  31. Cooper Rory A (1995) Intelligent control of power wheelchairs. IEEE Eng Med Biol Mag 14(4):423–431

    Article  Google Scholar 

  32. Brandt A, Iwarsson S, Stahle A (2004) Older people’s use of powered wheelchairs for activity and participation. J Rehabil Med 36(2):70–77

    Article  Google Scholar 

  33. Holden Maureen K (2005) Virtual environments for motor rehabilitation. Cyberpsychol Behav 8(3):187–211

    Article  Google Scholar 

  34. Antonio F, Massimo B, Carboncini Maria C, Bruno R (2009) Robotic assisted rehabilitation in virtual reality with the l-exos. Stud Health Technol Inform 145:40–54

    Google Scholar 

  35. Adamovich SV, Merians AS, Boian R, Lewis JA, Tremaine M, Burdea GS, Recce M, Poizner H (2005) A virtual reality-based exercise system for hand rehabilitation post-stroke. Presence Teleoperators Virtual Environ 14(2):161–174

    Article  Google Scholar 

  36. Igo KH, Joseph PJ, Laura D, Mark F, Jennifer K, Keren R, Volpe Bruce T, Neville H (2003) Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robot 15(1):7–20

    Article  Google Scholar 

  37. Burgar Charles G, Lum Peter S, Shor Peggy C, Machiel Van der Loos HF (2000) Development of robots for rehabilitation therapy: The palo alto va/stanford experience. J Rehabil Res Dev 37(6):663–674

    Google Scholar 

  38. Igo KH, Neville H, Aisen Mindy L, Volpe Bruce T (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6(1):75–87

    Article  Google Scholar 

  39. Palsbo SE, Hood-Szivek P (2012) Effect of robotic-assisted three-dimensional repetitive motion to improve hand motor function and control in children with handwriting deficits: a nonrandomized phase 2 device trial. Am J Occup Ther 66(6):682–690

    Article  Google Scholar 

  40. Botsis T, Demiris G, Pedersen S, Hartvigsen G (2008) Home telecare technologies for the elderly. J Telemed Telecare 14(7):333–337

    Article  Google Scholar 

  41. Dittmar A, Axisa F, Delhomme G, Gehin C (2004) New concepts and technologies in home care and ambulatory monitoring. Stud Health Technol Inform 108:9–35

    Google Scholar 

  42. Adriana T, Cristian Ţ, Matarić Maja J (2008) User-robot personality matching and assistive robot behavior adaptation for post-stroke rehabilitation therapy. Intel Serv Robot 1(2):169

    Article  Google Scholar 

  43. Ho NSK, Tong KY, Hu XL, Fung KL, Wei XJ, Rong W, Susanto EA (2011) An emg-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. In: 2011 IEEE international conference on rehabilitation robotics, pages 1–5. IEEE

  44. Balasubramanian S, Klein J, Burdet E (2010) Robot-assisted rehabilitation of hand function. Curr Opin Neurol 23(6):661–670

    Article  Google Scholar 

  45. Krebs HI, Volpe BT, Williams D, Celestino J, Charles SK, Lynch D, Hogan N (2007) Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):327–335

    Article  Google Scholar 

  46. Park Y-L, Chen B, Pérez-Arancibia NO, Young D, Stirling L, Wood RJ, Goldfield EC, Nagpal R (2014) Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspiration Biomim 9(1):016007

    Article  Google Scholar 

  47. Agrawal A, Banala SK, Agrawal SK, Binder-Macleod SA (2005) Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation. In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, pages 41–44. IEEE

  48. Chen G, Chan CK, Guo Z, Yu H (2013) A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit Rev \(^TM\) Biomed Eng, 41(4-5)

  49. Roy A, Krebs HI, Patterson SL, Judkins TN, Khanna I, Forrester LW, Macko RM, Hogan N (2007) Measurement of human ankle stiffness using the anklebot. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pages 356–363. IEEE

  50. Roy A, Krebs HI, Barton JE, Macko RF, Forrester LW (2013) Anklebot-assisted locomotor training after stroke: A novel deficit-adjusted control approach. In: 2013 IEEE International Conference on Robotics and Automation, pages 2175–2182. IEEE

  51. Anam K, Al-Jumaily AA (2012) Active exoskeleton control systems: State of the art. In: International Symposium on Robotics and Intelligent Sensors

  52. Letier P, Motard E, Verschueren JP (2010) Exostation: haptic exoskeleton based control station. In Proceedings of the IEEE International Conference on Robotics and Automation

  53. Zoss AB, Kazerooni H, Chu A (2006) Biomechanical design of the berkeley lower extremity exoskeleton. IEEE/ASME Trans Mechatron 11(2):128–138

    Article  Google Scholar 

  54. Jezernik S, Wassink RGV, Keller T (2004) Sliding mode closed-loop control of fes: controlling the shank movement. IEEE Trans Biomed Eng 51(2):263–272

    Article  Google Scholar 

  55. Zoss Adam B, Hami K, Andrew C (2006) Biomechanical design of the berkeley lower extremity exoskeleton (bleex). IEEE/ASME Trans Mechatron 11(2):128–138

    Article  Google Scholar 

  56. Chu A, Kazerooni H, Zoss A (2005) On the biomimetic design of the berkeley lower extremity exoskeleton (bleex). In: Proceedings of the IEEE International Conference on Robotics and Automation, pages 4345–4352. Citeseer

  57. Ackerman E (2010) Berkeley bionics introduces elegs robotic exoskeleton. IEEE Spectr, 10

  58. Low KH (2011) Robot-assisted gait rehabilitation: From exoskeletons to gait systems. In: Defense Science Research Conference and Expo (DSR), pages 1–10. IEEE

  59. Faieghi M, Jalali A (2014) Robust adaptive cruise control of high speed trains. ISA Trans 53(2):533–541

    Article  Google Scholar 

  60. Yu W, Rosen J (2000) A novel linear pid controller for an upper limb exoskeleton. In: Proceedings of the 49th IEEE Conference on Decision and Control

  61. Zohdy MA, Zaher AA (2000) Robust control of biped robots. In: American Control Conference

  62. Kazerooni H, Racine JL, Lihua H, Steger R (2005) On the control of the berkeley lower extremity exoskeleton (bleex). In: Proceedings of the IEEE International Conference on Robotics and Automation

  63. Kashiri N, Laffranchi M, Tsagarakis NG, Sardellitti I, Caldwell DG (2012) Dynamic modeling and adaptable control of the compact arm. In: Proceedings of the International Symposium on Robotics and Intelligent Sensors

  64. Grizzle Jessy W, Christine C, Sinnet Ryan W, Ames Aaron D (2014) Models, feedback control, and open problems of 3d bipedal robotic walking. Automatica 50(8):1955–1988

    Article  MathSciNet  MATH  Google Scholar 

  65. Jimenez-Fabian R, Verlinden O (2012) Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys 34(4):397–408

    Article  Google Scholar 

  66. Ferris Daniel P, Lewis Cara L (2009) Robotic lower limb exoskeletons using proportional myoelectric control. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 2119–2124. IEEE

  67. Ugurlu B, Nishimura M, Hyodo K, Kawanishi M, Narikiyo T (2012) A framework for sensorless torque estimation and control in wearable exoskeletons. In: Proceedings of the 12th IEEE International Workshop on Advanced Motion Control, pages 1–7. IEEE

  68. Ames Aaron D (2014) Human-inspired control of bipedal walking robots. IEEE Trans Autom Control 59(5):1115–1130

    Article  MathSciNet  MATH  Google Scholar 

  69. Bland JH, Boushey DR (1990) Anatomy and physiology of the cervical spine. Semin Arthritis Rheum 20:1–20

    Article  Google Scholar 

  70. McGil S (2007) Low Back Disorders: evidenced-based Prevention and Rehabilitation. Human Kinetics

  71. Eisenberg MG (1995) Dictionary of Rehabilitation. Springer Publishing Company

  72. Bergmark A (1989) Stability of the lumbar spine. Acta Orthop Scand 230:1–54

    Article  Google Scholar 

  73. White AA, Panjabi MM (1978) Clinical biomechanics of the spine. Lippincott

  74. Sypert GW (1987) External spinal orthotics. Neurosurgery 20(4):642–649

    Article  Google Scholar 

  75. Luenberger L, Colombo G, Riener R, Dietz V (2004) Biofeedback in gait training with the robotic orthosis lokomat. In: IEMBS 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2:4888–4891

  76. Ballesteros-Escamilla M, Cruz-Ortiz D, Salgado I, Chairez I (2019) Hybrid position/force output feedback second-order sliding mode control for a prototype of an active orthosis used in back-assisted mobilization. Med Biol Eng Comput 57(9):1843–1860

    Article  Google Scholar 

  77. Meng M, Chen C, Liu PX, Rao M (2000) E-service robot in home healthcare. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000)(Cat. No. 00CH37113), volume 2, pages 832–837. IEEE

  78. Bergamasco M, Dario P, Sabatini A (1989) Advanced interfaces for teleoperated biomedical robots. In: Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society, pages 912–913. IEEE

  79. Michaud F, Boissy P, Labonte D, Corriveau H, Grant A, Lauria M, Cloutier R, Roux M-A, Iannuzzi D, Royer M-P (2007) Telepresence robot for home care assistance. In: AAAI spring symposium: multidisciplinary collaboration for socially assistive robotics, pages 50–55. California, USA

  80. Oboe R, Fiorini P (1997) Issues on internet-based teleoperation. IFAC Proc Vol 30(20):591–597

    Article  Google Scholar 

  81. Partha Pratim Ray (2016) Internet of robotic things: concept, technologies, and challenges. IEEE Access 4:9489–9500

    Article  Google Scholar 

  82. Okamura Allison M, Mataric Maja J, Christensen Henrik I (2010) Medical and health-care robotics. IEEE Robot Autom Magaz 17(3):26–37

    Article  Google Scholar 

  83. Leifer L, Toye G, Van der Loos M (1996) Tele-service-robot: integrating the socio-technical framework of human service through the internet-world-wide-web. Robot Auton Syst 18(1–2):117–126

    Article  Google Scholar 

  84. Taylor RH (1997) Robots as surgical assistants: where we are, wither we are tending, and how to get there. In: Conference on Artificial Intelligence in Medicine in Europe, pages 1–11. Springer

  85. Goradia A, Xi N, Elhajj IH (2005) Internet based robots: applications, impacts, challenges and future directions. In: IEEE Workshop on Advanced Robotics and its Social Impacts, 2005. pages 73–78. IEEE

  86. David B, Acosta-Marquez C, Mark H, Simon B, Pam E, Mawson S (2009) Nexos-the design, development and evaluation of a rehabilitation system for the lower limbs. Mechatronics 19(2):247–257

    Article  Google Scholar 

  87. Židek K, Líška O, Maxim V (2012) Advanced rehabilitation device based on artificial muscle actuators with neural network implementation. J Autom Mobile Robot Intell Syst 6:30–32

    Google Scholar 

  88. Broccard FD, Tim Mullen Yu, Chi M, Peterson D, Iversen JR, Arnold M, Kreutz-Delgado K, Jung T-P, Makeig S, Poizner H et al (2014) Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders. Ann Biomed Eng 42(8):1573–1593

    Article  Google Scholar 

  89. Ito S, Kawasaki H, Ishigure Y, Natsume M, Mouri T, Nishimoto Y (2011) A design of fine motion assist equipment for disabled hand in robotic rehabilitation system. J Franklin Inst 348(1):79–89

    Article  MATH  Google Scholar 

  90. Hoeckelmann M, Rudas IJ, Fiorini P, Kirchner F, Haidegger T (2015) Current capabilities and development potential in surgical robotics. Int J Adv Robot Syst 12(5):61

    Article  Google Scholar 

  91. Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K, Saltuari L (2007) Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Repair 21(4):307–314

    Article  Google Scholar 

  92. Sazonov ES, Fulk G, Sazonova N, Schuckers S (2009) Automatic recognition of postures and activities in stroke patients. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 2200–2203. IEEE

  93. Gracovetsky S (2010) Non invasive assessment of spinal function. Aardvark Global Publishing, Automatizing the Physical Examination. Canada

  94. Stassen HG, Steele RD, Lyman J (1989) A man-machine system approach in the field of rehabilitation: a challenge or a necessity. IFAC Proc Vol 22(12):79–87

    Article  Google Scholar 

  95. Barry Daniel T (2018) Adaptation, artificial intelligence, and physical medicine and rehabilitation. PM &R 10(9):S131–S143

    Google Scholar 

  96. Hamet P, Tremblay J (2017) Artificial intelligence in medicine. Metabolism 69:S36–S40

    Article  Google Scholar 

  97. Tasioulas J (2019) First steps towards an ethics of robots and artificial intelligence. J Pract Ethics, 7(1)

  98. Davim JP (2012) The design and manufacture of medical devices. Elsevier

  99. Heneghan C, Thompson M, Billingsley M, Cohen D (2011) Medical-device recalls in the uk and the device-regulation process: retrospective review of safety notices and alerts. BMJ open 1(1):e000155

    Article  Google Scholar 

  100. Yulun W, Butner Steven E, Ara D (2006) The developing market for medical robotics. Proc IEEE 94(9):1763–1771

    Article  Google Scholar 

  101. Bogusz Maciej J (2011) Quality assurance in the pathology laboratory: forensic, technical, and ethical aspects. CRC Press

  102. Bell R (2006) Introduction to iec 61508. In: Proceedings of the 10th Australian workshop on Safety critical systems and software-Volume 55, pages 3–12. Australian Computer Society, Inc

  103. Jocelyn S, Baudoin J, Chinniah Y, Charpentier P (2014) Feasibility study and uncertainties in the validation of an existing safety-related control circuit with the iso 13849–1: 2006 design standard. Reliab Eng Syst Saf 121:104–112

    Article  Google Scholar 

  104. Brown S (2002) Overview of iec 61508

  105. Hengstler M, Enkel E, Duelli S (2016) Applied artificial intelligence and trust-the case of autonomous vehicles and medical assistance devices. Technol Forecast Soc Chang 105:105–120

    Article  Google Scholar 

  106. Ogiela Marek R, Tadeusiewicz R (2003) Artificial intelligence structural imaging techniques in visual pattern analysis and medical data understanding. Pattern Recognit 36(10):2441–2452

    Article  MATH  Google Scholar 

  107. O’sullivan S, Nevejans N, Allen C, Blyth A, Leonard S, Pagallo U, Holzinger K, Holzinger A, Sajid MI, Ashrafian H (2019) Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (ai) and autonomous robotic surgery. Int J Med Robot Comput Assist Surg 15(1):e1968

    Article  Google Scholar 

  108. Proietti T, Crocher V, Roby-Brami A, Jarrasse N (2016) Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev Biomed Eng 9:4–14

    Article  Google Scholar 

  109. Yang G-Z, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, Hata N, Kazanzides P, Martel S, Patel RV et al (2017) Medical robotics-regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot 2(4):8638

    Article  Google Scholar 

  110. Holder C, Khurana V, Hook J, Bacon G, Day R (2016) Robotics and law: key legal and regulatory implications of the robotics age (part ii of ii). Comput Law Secur Rev 32(4):557–576

    Article  Google Scholar 

  111. Datteri E, Tamburrini G (2009) Ethical reflections on health care robotics. Ethics and robotics, pages 35–48

  112. Van Wynsberghe A (2016) Healthcare robots: Ethics, design and implementation. Routledge

  113. Coeckelbergh M, Pop C, Simut R, Peca A, Pintea S, David D, Vanderborght B (2016) A survey of expectations about the role of robots in robot-assisted therapy for children with asd: ethical acceptability, trust, sociability, appearance, and attachment. Sci Eng Ethics 22(1):47–65

    Article  Google Scholar 

  114. Iosa M, Morone G, Cherubini A, Paolucci S (2016) The three laws of neurorobotics: a review on what neurorehabilitation robots should do for patients and clinicians. J Med Biol Eng 36(1):1–11

    Article  Google Scholar 

  115. Archibald Mandy M, Alan B (2018) Futurism in nursing: technology, robotics and the fundamentals of care. J Clin Nurs 27(11):2473–2480

    Article  Google Scholar 

  116. Chibani A, Amirat Y, Mohammed S, Matson E, Hagita N, Barreto M (2013) Ubiquitous robotics: recent challenges and future trends. Robot Auton Syst 61(11):1162–1172

    Article  Google Scholar 

  117. Yakub F, Khudzari AZM, Yasuchika M (2014) Recent trends for practical rehabilitation robotics, current challenges and the future. Int J Rehabil Res 37(1):9–21

    Article  Google Scholar 

  118. Li L, Tyson S, Weightman A (2021) Professionals’ views and experiences of using rehabilitation robotics with stroke survivors: a mixed methods survey. Frontiers Med Technol, page 66

  119. Tsui C, Klein R, Garabrant M (2013) Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg Endosc 27(7):2253–2257

    Article  Google Scholar 

  120. Haidegger T, Kovács L, Fordos G, BZ, Kazanzides P (2008) Future trends in robotic neurosurgery. In: 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, pages 229–233. Springer

  121. Kristoffersson A, Coradeschi S, Loutfi A, Severinson-Eklundh K (2011) An exploratory study of health professionals’ attitudes about robotic telepresence technology. J Technol Hum Serv 29(4):263–283

    Article  Google Scholar 

  122. Baxter P, Belpaeme T, Canamero L, Cosi P, Demiris Y, Enescu V, Hiolle A, Kruijff-Korbayova I, Looije R, Nalin M et al. (2011) Long-term human-robot interaction with young users. In: IEEE/ACM Human-Robot Interaction 2011 Conference (Robots with Children Workshop)

Download references

Funding

Isaac Chairez thanks the economical support provided by the National Polytechnic Institute via the Internal Call for Scientific and Research development with the Grant Number SIP 20190756.

Author information

Authors and Affiliations

Authors

Contributions

The contribution of each author can be summarized as follows: (a) AGG contributed with the deeply analysis of the clinical and technical requirements and obligations from the medical point view; (b) RFA reviewed the automatic rehabilitation process based on artificial intelligence. (c) IS reviewed the interaction between the therapy robotics and the current expected outcomes of applying such devices on the patients recovery and (d) IC organizes this review and provided the general framework for designing the manuscript composition.

Corresponding author

Correspondence to Isaac Chairez.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Gonzalez, A., Fuentes-Aguilar, R.Q., Salgado, I. et al. A review on the application of autonomous and intelligent robotic devices in medical rehabilitation. J Braz. Soc. Mech. Sci. Eng. 44, 393 (2022). https://doi.org/10.1007/s40430-022-03692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03692-8

Keywords

Navigation