Abstract
This paper presents a new modulus combination–combination synchronization (MCCS) scheme using the adaptive control technique. MCCS scheme is performed between complex hyperchaotic (HC) systems and real hyperchaotic (HC) systems. The HC complex Lorenz and Lu are taken as master systems, and the HC Chen system and Newton–Leipnik are taken as slave systems. Based on the Lyapunov stability theory, adaptive control and parameter update law are obtained from making the MCCS. According to the appropriateness of modulus synchronization as a persuasive explication for secure communication, we then explored the application of the suggested adaptive MCCS design. Also, the complexity of master systems improves the protection of stable transmission. Technical investigation and conclusion of simulations verify the performance of the suggested technique using MATLAB.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Aghababa, M. P. (2012). Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems. Chinese Physics B, 21(3), 030502.
Al-Mahbashi, G., Md, M. S., & Noorani., (2019). Finite-time lag synchronization of uncertain complex dynamical networks with disturbances via sliding mode control. IEEE Access, 7, 7082–7092.
Bhalekar, S. (2014). Synchronization of non-identical fractional order hyperchaotic systems using active control. World Journal of Modelling and Simulation, 10(1), 60–68.
Chao, L. (2016). Hybrid delayed synchronizations of complex chaotic systems in modulus-phase spaces and its application. Journal of Computational and Nonlinear Dynamics, 11(4), 041010.
Das, S., & Pan, I. (2011). Fractional order signal processing: Introductory concepts and applications. Berlin: Springer.
Ding, Z., & Shen, Y. (2016). Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Networks, 76, 97–105.
Ghosh, D., & Bhattacharya, S. (2010). Projective synchronization of new hyperchaotic system with fully unknown parameters. Nonlinear Dynamics, 61(1–2), 11–21.
Hamri, N., & Ouahabi, R. (2017). Modified projective synchronization of different chaotic systems using adaptive control. Computational and Applied Mathematics, 36(3), 1315–1332.
He, J., & Cai, J. (2014). Finite-time combination–combination synchronization of hyperchaotic systems and its application in secure communication. Physical Science International Journal, 4(10), 1326.
Hubler, A. W. (1989). Adaptive control of chaotic system. Helv Phys Acta, 62, 343–346.
Khan, A., & Nigar, U. (2019a). Adaptive hybrid complex projective combination-combination synchronization in non-identical hyperchaotic complex systems. International Journal of Dynamics and Control, 7, 1404–1418.
Khan, A., & Nigar, U. (2019b). Adaptive sliding mode disturbance observer control base synchronization in a class of fractional order Chuas chaotic system. Emerging Trends in, 107.
Khan, A., & Nigar, U. (2020a). Combination projective synchronization in fractional-order chaotic system with disturbance and uncertainty. International Journal of Applied and Computational Mathematics, 6(4), 1–22.
Khan, A., & Nigar, U. (2020b). Sliding mode disturbance observer control based on adaptive hybrid projective compound combination synchronization in fractional-order chaotic systems. Journal of Control, Automation and Electrical Systems, Systems, 31, 885-899. https://doi.org/10.1007/s40313-020-00613-9.
Khan, A., & Singh, S. (2018a). Chaotic analysis and combination-combination synchronization of a novel hyperchaotic system without any equilibria. Chinese Journal of Physics, 56(1), 238–251.
Khan, A., & Singh, S. (2018b). Generalization of combination-combination synchronization of n-dimensional time-delay chaotic system via robust adaptive sliding mode control. Mathematical Methods in the Applied Sciences, 41(9), 3356–3369.
Khan, A., Singh, S., & Azar, A. T. (2019). Combination–combination anti-synchronization of four fractional order identical hyperchaotic systems. In International conference on advanced machine learning technologies and applications (pp. 406–414). Springer.
Khan, A., & Tyagi, A. (2017a). Analysis and hyper-chaos control of a new 4-d hyper-chaotic system by using optimal and adaptive control design. International Journal of Dynamics and Control, 5(4), 1147–1155.
Khan, A., & Tyagi, A. (2017b). Fractional order disturbance observer based adaptive sliding mode synchronization of commensurate fractional order genesio-tesi system. AEU-International Journal of Electronics and Communications, 82, 346–357.
Liao, T.-L., & Tsai, S.-H. (2000). Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons and Fractals, 11(9), 1387–1396.
Li, G.-H., & Zhou, S.-P. (2007). Anti-synchronization in different chaotic systems. Chaos, Solitons & Fractals, 32(2), 516–520.
Li, P., Juan, D., Li, S., & Zheng, Y. (2019). Modulus synchronization of a novel hyperchaotic real system and its corresponding complex system. IEEE Access, 7, 109577–109584.
Li, X.-F., Leung, A. C.-S., Han, X.-P., Liu, X.-J., & Chu, Y.-D. (2011). Complete (anti-) synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dynamics, 63(1–2), 263–275.
Li, Y., Tang, W. K. S., & Chen, G. (2005). Generating hyperchaos via state feedback control. International Journal of Bifurcation and Chaos, 15(10), 3367–3375.
Liu, W., & Liu, W. (2018). Chaotic behavior analysis and control of a toxin producing phytoplankton and zooplankton system based on linear feedback. Filomat, 32(11), 3779–3789.
Liu, J., Liu, S., & Sprott, J. C. (2016). Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters. Nonlinear Dynamics, 83(1–2), 1109–1121.
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141.
Mahamoud, G. M., & Ahmed, M. E. (2011). Modified projective synchronization and control of complex Chen and Lu systems. Journal of Vibration and Control, 17, 1184–1194.
Mahmoud, E. E. (2014). Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems. Mathematical Methods in the Applied Sciences, 37(3), 321–328.
Mahmoud, E. E., & AL-Harthi, B. H. (2020). A hyperchaotic detuned laser model with an infinite number of equilibria existing on a plane and its modified complex phase synchronization with time lag. Chaos, Solitons & Fractals, 130, 109442.
Mahmoud, G. M., Ahmed, M. E., & Mahmoud, E. E. (2008). Analysis of hyperchaotic complex Lorenz systems. International Journal of Modern Physics C, 19(10), 1477–1494.
Mahmoud, G. M., Aly, S. A., & Al-Kashif, M. A. (2008). Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dynamics, 51(1–2), 171–181.
Mahmoud, G. M., Aly, S. A., & Farghaly, A. A. (2007). On chaos synchronization of a complex two coupled dynamos system. Chaos, Solitons and Fractals, 33(1), 178–187.
Mahmoud, G. M., & Mahmoud, E. E. (2010a). Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dynamics, 62(4), 875–882.
Mahmoud, G. M., & Mahmoud, E. E. (2010b). Synchronization and control of hyperchaotic complex Lorenz system. Mathematics and Computers in Simulation, 80(12), 2286–2296.
Mahmoud, G. M., Mahmoud, E. E., & Arafa, A. A. (2013). On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications. Physica Scripta, 87(5), 055002.
Nian, F., Wang, X., Niu, Y., & Lin, D. (2010). Module-phase synchronization in complex dynamic system. Applied Mathematics and Computation, 217(6), 2481–2489.
Parhi, D. R. K., Patle, B. K., Jagadeesh, A., & Kashyap, S. K. (2018). Matrix-binary codes based genetic algorithm for path planning of mobile robot. Computers & Electrical Engineering, 67, 708–728.
Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821.
Rossler, O. E. (1979). An equation for hyperchaos. Physics Letters A, 71(2–3), 155–157.
Rouche, N., Habets, P., & Laloy, M. (1977). Stability theory by Liapunov’s direct method (Vol. 4). Berlin: Springer.
Runzi, L., Yinglan, W., & Shucheng, D. (2011). Combination synchronization of three classic chaotic systems using active backstepping design. Chaos: An Interdisciplinary Journal of Nonlinear Science, 21(4), 043114.
Russell, M. (1967). Henri poincaré and the quantum theory. Isis, 58(1), 37–55.
Sastry, S. (2013). Nonlinear systems: Analysis, stability, and control (Vol. 10). Berlin: Springer.
Sun, J., Shen, Y., & Zhang, X. (2014). Modified projective and modified function projective synchronization of a class of real nonlinear systems and a class of complex nonlinear systems. Nonlinear Dynamics, 78(3), 1755–1764.
Sun, J., Shen, Y., Zhang, G., Chengjie, X., & Cui, G. (2013). Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dynamics, 73(3), 1211–1222.
Vaidyanathan, S. (2015). Adaptive biological control of generalized Lotka-Volterra three-species biological system. International Journal of PharmTech Research, 8(4), 622–631.
Vaidyanathan, S. (2016). Hybrid synchronization of the generalized Lotka-Volterra three-species biological systems via adaptive control. International Journal of PharmTech Research, 9(1), 179–192.
Vaidyanathan, S., Dolvis, L. G., Jacques, K., Lien, C.-H., & Sambas, A. (2019). A new five-dimensional four-wing hyperchaotic system with hidden attractor, its electronic circuit realisation and synchronisation via integral sliding mode control. International Journal of Modelling, Identification and Control, 32(1), 30–45.
Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93(5), 1328–1340.
Wang, S., Huang, Y., & Ren, S. (2017). Synchronization and robust synchronization for fractional-order coupled neural networks. IEEE Access, 5, 12439–12448.
Wang, X., & Luo, C. (2013). Hybrid modulus-phase synchronization of hyperchaotic complex systems and its application to secure communication. International Journal of Nonlinear Sciences and Numerical Simulation, 14(7–8), 533–542.
Wang, X.-Y., & Sun, P. (2011). Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters. Nonlinear Dynamics, 63(4), 599–609.
Wang, S., Wang, X., Zhou, Y., & Han, B. (2016). A memristor-based hyperchaotic complex Lü system and its adaptive complex generalized synchronization. Entropy, 18(2), 58.
Wang, X., Zhang, X., & Ma, C. (2012). Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dynamics, 69(1–2), 511–517.
Xiang-Jun, W., Wang, H., & Hong-Tao, L. (2011). Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Analysis: Real World Applications, 12(2), 1288–1299.
Xin, B., & Zhang, J. (2015). Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dynamics, 79(2), 1399–1409.
Yadav, V. K., Prasad, G., Srivastava, M., & Das, S. (2019). Combination-combination phase synchronization among non-identical fractional order complex chaotic systems via nonlinear control. International Journal of Dynamics and Control, 7(1), 330–340.
Yassen, M. T. (2003). Adaptive control and synchronization of a modified Chua’s circuit system. Applied Mathematics and Computation, 135(1), 113–128.
Yoshizawa, T. (1966) Stability Theory by Lyapunov’s Second Method. The Mathematical Society of Japan.
Zhang, C., Wang, X., Wang, S., Zhou, W., & Xia, Z. (2018). Finite-time synchronization for a class of fully complex-valued networks with coupling delay. IEEE Access, 6, 17923–17932.
Zhou, X., Xiong, L., & Cai, X. (2014). Combination–combination synchronization of four nonlinear complex chaotic systems. In Abstract and Applied Analysis. Hindawi.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Khan, A., Nigar, U. Modulus Synchronization in Non-identical Hyperchaotic Complex Systems and Hyperchaotic Real System Using Adaptive Control. J Control Autom Electr Syst 32, 291–308 (2021). https://doi.org/10.1007/s40313-020-00655-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40313-020-00655-z