Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Modulus Synchronization in Non-identical Hyperchaotic Complex Systems and Hyperchaotic Real System Using Adaptive Control

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper presents a new modulus combination–combination synchronization (MCCS) scheme using the adaptive control technique. MCCS scheme is performed between complex hyperchaotic (HC) systems and real hyperchaotic (HC) systems. The HC complex Lorenz and Lu are taken as master systems, and the HC Chen system and Newton–Leipnik are taken as slave systems. Based on the Lyapunov stability theory, adaptive control and parameter update law are obtained from making the MCCS. According to the appropriateness of modulus synchronization as a persuasive explication for secure communication, we then explored the application of the suggested adaptive MCCS design. Also, the complexity of master systems improves the protection of stable transmission. Technical investigation and conclusion of simulations verify the performance of the suggested technique using MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Aghababa, M. P. (2012). Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems. Chinese Physics B, 21(3), 030502.

    Article  MathSciNet  Google Scholar 

  • Al-Mahbashi, G., Md, M. S., & Noorani., (2019). Finite-time lag synchronization of uncertain complex dynamical networks with disturbances via sliding mode control. IEEE Access, 7, 7082–7092.

  • Bhalekar, S. (2014). Synchronization of non-identical fractional order hyperchaotic systems using active control. World Journal of Modelling and Simulation, 10(1), 60–68.

    Google Scholar 

  • Chao, L. (2016). Hybrid delayed synchronizations of complex chaotic systems in modulus-phase spaces and its application. Journal of Computational and Nonlinear Dynamics, 11(4), 041010.

    Article  Google Scholar 

  • Das, S., & Pan, I. (2011). Fractional order signal processing: Introductory concepts and applications. Berlin: Springer.

    MATH  Google Scholar 

  • Ding, Z., & Shen, Y. (2016). Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Networks, 76, 97–105.

    Article  MATH  Google Scholar 

  • Ghosh, D., & Bhattacharya, S. (2010). Projective synchronization of new hyperchaotic system with fully unknown parameters. Nonlinear Dynamics, 61(1–2), 11–21.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamri, N., & Ouahabi, R. (2017). Modified projective synchronization of different chaotic systems using adaptive control. Computational and Applied Mathematics, 36(3), 1315–1332.

    Article  MathSciNet  MATH  Google Scholar 

  • He, J., & Cai, J. (2014). Finite-time combination–combination synchronization of hyperchaotic systems and its application in secure communication. Physical Science International Journal, 4(10), 1326.

    Article  Google Scholar 

  • Hubler, A. W. (1989). Adaptive control of chaotic system. Helv Phys Acta, 62, 343–346.

    Google Scholar 

  • Khan, A., & Nigar, U. (2019a). Adaptive hybrid complex projective combination-combination synchronization in non-identical hyperchaotic complex systems. International Journal of Dynamics and Control, 7, 1404–1418.

    Article  MathSciNet  Google Scholar 

  • Khan, A., & Nigar, U. (2019b). Adaptive sliding mode disturbance observer control base synchronization in a class of fractional order Chuas chaotic system. Emerging Trends in, 107.

  • Khan, A., & Nigar, U. (2020a). Combination projective synchronization in fractional-order chaotic system with disturbance and uncertainty. International Journal of Applied and Computational Mathematics, 6(4), 1–22.

    Article  MathSciNet  Google Scholar 

  • Khan, A., & Nigar, U. (2020b). Sliding mode disturbance observer control based on adaptive hybrid projective compound combination synchronization in fractional-order chaotic systems. Journal of Control, Automation and Electrical Systems, Systems, 31, 885-899. https://doi.org/10.1007/s40313-020-00613-9.

  • Khan, A., & Singh, S. (2018a). Chaotic analysis and combination-combination synchronization of a novel hyperchaotic system without any equilibria. Chinese Journal of Physics, 56(1), 238–251.

    Article  MathSciNet  Google Scholar 

  • Khan, A., & Singh, S. (2018b). Generalization of combination-combination synchronization of n-dimensional time-delay chaotic system via robust adaptive sliding mode control. Mathematical Methods in the Applied Sciences, 41(9), 3356–3369.

    Article  MathSciNet  MATH  Google Scholar 

  • Khan, A., Singh, S., & Azar, A. T. (2019). Combination–combination anti-synchronization of four fractional order identical hyperchaotic systems. In International conference on advanced machine learning technologies and applications (pp. 406–414). Springer.

  • Khan, A., & Tyagi, A. (2017a). Analysis and hyper-chaos control of a new 4-d hyper-chaotic system by using optimal and adaptive control design. International Journal of Dynamics and Control, 5(4), 1147–1155.

    Article  MathSciNet  Google Scholar 

  • Khan, A., & Tyagi, A. (2017b). Fractional order disturbance observer based adaptive sliding mode synchronization of commensurate fractional order genesio-tesi system. AEU-International Journal of Electronics and Communications, 82, 346–357.

    Google Scholar 

  • Liao, T.-L., & Tsai, S.-H. (2000). Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons and Fractals, 11(9), 1387–1396.

    Article  MATH  Google Scholar 

  • Li, G.-H., & Zhou, S.-P. (2007). Anti-synchronization in different chaotic systems. Chaos, Solitons & Fractals, 32(2), 516–520.

    Article  Google Scholar 

  • Li, P., Juan, D., Li, S., & Zheng, Y. (2019). Modulus synchronization of a novel hyperchaotic real system and its corresponding complex system. IEEE Access, 7, 109577–109584.

    Article  Google Scholar 

  • Li, X.-F., Leung, A. C.-S., Han, X.-P., Liu, X.-J., & Chu, Y.-D. (2011). Complete (anti-) synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dynamics, 63(1–2), 263–275.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y., Tang, W. K. S., & Chen, G. (2005). Generating hyperchaos via state feedback control. International Journal of Bifurcation and Chaos, 15(10), 3367–3375.

    Article  Google Scholar 

  • Liu, W., & Liu, W. (2018). Chaotic behavior analysis and control of a toxin producing phytoplankton and zooplankton system based on linear feedback. Filomat, 32(11), 3779–3789.

    Article  MathSciNet  Google Scholar 

  • Liu, J., Liu, S., & Sprott, J. C. (2016). Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters. Nonlinear Dynamics, 83(1–2), 1109–1121.

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahamoud, G. M., & Ahmed, M. E. (2011). Modified projective synchronization and control of complex Chen and Lu systems. Journal of Vibration and Control, 17, 1184–1194.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahmoud, E. E. (2014). Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems. Mathematical Methods in the Applied Sciences, 37(3), 321–328.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahmoud, E. E., & AL-Harthi, B. H. (2020). A hyperchaotic detuned laser model with an infinite number of equilibria existing on a plane and its modified complex phase synchronization with time lag. Chaos, Solitons & Fractals, 130, 109442.

    Article  MathSciNet  Google Scholar 

  • Mahmoud, G. M., Ahmed, M. E., & Mahmoud, E. E. (2008). Analysis of hyperchaotic complex Lorenz systems. International Journal of Modern Physics C, 19(10), 1477–1494.

    Article  MATH  Google Scholar 

  • Mahmoud, G. M., Aly, S. A., & Al-Kashif, M. A. (2008). Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dynamics, 51(1–2), 171–181.

    MathSciNet  MATH  Google Scholar 

  • Mahmoud, G. M., Aly, S. A., & Farghaly, A. A. (2007). On chaos synchronization of a complex two coupled dynamos system. Chaos, Solitons and Fractals, 33(1), 178–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahmoud, G. M., & Mahmoud, E. E. (2010a). Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dynamics, 62(4), 875–882.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahmoud, G. M., & Mahmoud, E. E. (2010b). Synchronization and control of hyperchaotic complex Lorenz system. Mathematics and Computers in Simulation, 80(12), 2286–2296.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahmoud, G. M., Mahmoud, E. E., & Arafa, A. A. (2013). On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications. Physica Scripta, 87(5), 055002.

    Article  MATH  Google Scholar 

  • Nian, F., Wang, X., Niu, Y., & Lin, D. (2010). Module-phase synchronization in complex dynamic system. Applied Mathematics and Computation, 217(6), 2481–2489.

    Article  MathSciNet  MATH  Google Scholar 

  • Parhi, D. R. K., Patle, B. K., Jagadeesh, A., & Kashyap, S. K. (2018). Matrix-binary codes based genetic algorithm for path planning of mobile robot. Computers & Electrical Engineering, 67, 708–728.

    Article  Google Scholar 

  • Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821.

    Article  MathSciNet  MATH  Google Scholar 

  • Rossler, O. E. (1979). An equation for hyperchaos. Physics Letters A, 71(2–3), 155–157.

    Article  MathSciNet  MATH  Google Scholar 

  • Rouche, N., Habets, P., & Laloy, M. (1977). Stability theory by Liapunov’s direct method (Vol. 4). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Runzi, L., Yinglan, W., & Shucheng, D. (2011). Combination synchronization of three classic chaotic systems using active backstepping design. Chaos: An Interdisciplinary Journal of Nonlinear Science, 21(4), 043114.

    Article  MATH  Google Scholar 

  • Russell, M. (1967). Henri poincaré and the quantum theory. Isis, 58(1), 37–55.

    Article  Google Scholar 

  • Sastry, S. (2013). Nonlinear systems: Analysis, stability, and control (Vol. 10). Berlin: Springer.

    Google Scholar 

  • Sun, J., Shen, Y., & Zhang, X. (2014). Modified projective and modified function projective synchronization of a class of real nonlinear systems and a class of complex nonlinear systems. Nonlinear Dynamics, 78(3), 1755–1764.

    Article  MathSciNet  Google Scholar 

  • Sun, J., Shen, Y., Zhang, G., Chengjie, X., & Cui, G. (2013). Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dynamics, 73(3), 1211–1222.

    Article  MathSciNet  MATH  Google Scholar 

  • Vaidyanathan, S. (2015). Adaptive biological control of generalized Lotka-Volterra three-species biological system. International Journal of PharmTech Research, 8(4), 622–631.

    Google Scholar 

  • Vaidyanathan, S. (2016). Hybrid synchronization of the generalized Lotka-Volterra three-species biological systems via adaptive control. International Journal of PharmTech Research, 9(1), 179–192.

    Google Scholar 

  • Vaidyanathan, S., Dolvis, L. G., Jacques, K., Lien, C.-H., & Sambas, A. (2019). A new five-dimensional four-wing hyperchaotic system with hidden attractor, its electronic circuit realisation and synchronisation via integral sliding mode control. International Journal of Modelling, Identification and Control, 32(1), 30–45.

    Article  Google Scholar 

  • Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93(5), 1328–1340.

    Article  Google Scholar 

  • Wang, S., Huang, Y., & Ren, S. (2017). Synchronization and robust synchronization for fractional-order coupled neural networks. IEEE Access, 5, 12439–12448.

    Article  Google Scholar 

  • Wang, X., & Luo, C. (2013). Hybrid modulus-phase synchronization of hyperchaotic complex systems and its application to secure communication. International Journal of Nonlinear Sciences and Numerical Simulation, 14(7–8), 533–542.

    Article  Google Scholar 

  • Wang, X.-Y., & Sun, P. (2011). Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters. Nonlinear Dynamics, 63(4), 599–609.

    Article  MathSciNet  Google Scholar 

  • Wang, S., Wang, X., Zhou, Y., & Han, B. (2016). A memristor-based hyperchaotic complex Lü system and its adaptive complex generalized synchronization. Entropy, 18(2), 58.

    Article  Google Scholar 

  • Wang, X., Zhang, X., & Ma, C. (2012). Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dynamics, 69(1–2), 511–517.

    Article  MathSciNet  MATH  Google Scholar 

  • Xiang-Jun, W., Wang, H., & Hong-Tao, L. (2011). Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Analysis: Real World Applications, 12(2), 1288–1299.

    Article  MathSciNet  MATH  Google Scholar 

  • Xin, B., & Zhang, J. (2015). Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dynamics, 79(2), 1399–1409.

    Article  MathSciNet  MATH  Google Scholar 

  • Yadav, V. K., Prasad, G., Srivastava, M., & Das, S. (2019). Combination-combination phase synchronization among non-identical fractional order complex chaotic systems via nonlinear control. International Journal of Dynamics and Control, 7(1), 330–340.

    Article  MathSciNet  Google Scholar 

  • Yassen, M. T. (2003). Adaptive control and synchronization of a modified Chua’s circuit system. Applied Mathematics and Computation, 135(1), 113–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshizawa, T. (1966) Stability Theory by Lyapunov’s Second Method. The Mathematical Society of Japan.

  • Zhang, C., Wang, X., Wang, S., Zhou, W., & Xia, Z. (2018). Finite-time synchronization for a class of fully complex-valued networks with coupling delay. IEEE Access, 6, 17923–17932.

    Article  Google Scholar 

  • Zhou, X., Xiong, L., & Cai, X. (2014). Combination–combination synchronization of four nonlinear complex chaotic systems. In Abstract and Applied Analysis. Hindawi.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uzma Nigar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Nigar, U. Modulus Synchronization in Non-identical Hyperchaotic Complex Systems and Hyperchaotic Real System Using Adaptive Control. J Control Autom Electr Syst 32, 291–308 (2021). https://doi.org/10.1007/s40313-020-00655-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-020-00655-z

Keywords

Navigation