Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Self-similar solutions for the fractional viscous Burgers equation in Marcinkiewicz spaces

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the existence of self-similar solutions to the Cauchy problem for the viscous Burgers fractional equation with initial conditions in Marcinkiewcz spaces \(L^{(p,\infty )}\). In particular, we obtain the decay of the Mittag–Leffler family associated with the linear problem in Marcinkiewcz spaces and of its gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Alibaud N, Imbert C, Karch G (2010) Asymptotic properties of entropy solutions to fractal Burgers equation. SIAM J Math Anal 42(1):354–376

    Article  MathSciNet  MATH  Google Scholar 

  • Alsaedi A, Kirane M, Torebek B (2020) Blow-up solutions of the time-fractional Burgers equation. Quaest Math 43(2):185–192

    Article  MATH  Google Scholar 

  • Avrin JD (1987) The generalized Burgers’ equation and the Navier-Stokes equation in \({ R}^n\) with singular initial data. Proc Am Math Soc 101(1):29–40

    MathSciNet  MATH  Google Scholar 

  • Barraza OA (1996) Self-similar solutions in weak \(L^p\)-spaces of the Navier–Stokes equations. Rev Mat Iberoam 12(2):411–439

    Article  MATH  Google Scholar 

  • Benia Y, Sadallah B-K (2016) Existence of solutions to Burgers equations in domains that can be transformed into rectangles. Electron J Differ Equ 2016:Paper No. 157

    MathSciNet  MATH  Google Scholar 

  • Bergh J, Lofstrom J (1976) Interpolation spaces. Springer, Berlin–Heidelberg–New York

    Book  MATH  Google Scholar 

  • Biler P, Funaki T, Woyczynski WA (1998) Fractal Burgers equations. J Differ Equ 148(1):9–46

    Article  MathSciNet  MATH  Google Scholar 

  • Biler P, Funaki T, Woyczynski WA (1999) Interacting particle approximation for nonlocal quadratic evolution problems. Probab Math Stat 19(2):267–286 (Acta Univ. Wratislav. No. 2198)

    MathSciNet  MATH  Google Scholar 

  • Bonkile M, Awasthi A, Lashmi C, Mukundai V, Aswin VS (2018) A systematic literature review of Burgers’ equation with recent advances. Pranama J Phys 90:60

    MATH  Google Scholar 

  • Borikhanov M, Berikbol TT (2021) Local and blowing-up solutions for an integro-differential diffusion equation and system. Chaos Solitons Fractals 148:Article ID 111041

    Article  MathSciNet  MATH  Google Scholar 

  • Boritchev A (2018) Decaying turbulence for the fractional subcritical Burgers equation. Discrete Contin Dyn Syst 38(5):2229–2249

    Article  MathSciNet  MATH  Google Scholar 

  • Brezis H, Cazenave T (1996) A nonlinear heat equation with singular initial data. J Anal Math 68:277–304

    Article  MathSciNet  MATH  Google Scholar 

  • Burgers JM (1948) A mathematical model illustrating the theory of turbulence. Advances in applied mechanics, vol 1. Academic Press, Inc., New York, pp 171–199

    MATH  Google Scholar 

  • Caicedo A, Cuevas C, Mateus E, Viana A (2021) Global solutions for a strongly coupled fractional reaction-diffusion system in Marcinkiewicz spaces. Chaos, Solitons Fractals 145:110756

    Article  MathSciNet  MATH  Google Scholar 

  • de Almeida MF, Ferreira LCF (2012) Self-similarity, symmetries and asymptotic behavior in Morrey spaces for a fractional wave equation. Differ Integral Equ 25(9–10):957–976

    MathSciNet  MATH  Google Scholar 

  • de Almeida MF, Viana A (2016) Self-similar solutions for a superdiffusive heat equation with gradient nonlinearity. Electr J Differ Equ 250:1–20

    MathSciNet  MATH  Google Scholar 

  • de Andrade B, Viana A (2017) On a fractional reaction–diffusion equation. Z Angew Math Phys 68(3):Art. 59

    Article  MathSciNet  MATH  Google Scholar 

  • de Andrade B, Siracusa G, Viana A (2022) A nonlinear fractional diffusion equation: well-posedness, comparison results and blow-up. J Math Anal Appl 505:125524

    Article  MathSciNet  MATH  Google Scholar 

  • Dix DB (1996) Nonuniqueness and uniqueness in the initial-value problem for Burgers’ equation. SIAM J Math Anal 27(3):708–724

    Article  MathSciNet  MATH  Google Scholar 

  • Dong H, Du D, Li D (2009) Finite time singularities and global well-posedness for fractal Burgers equations. Indiana Univ Math J 58(2):807–821

    Article  MathSciNet  MATH  Google Scholar 

  • Elgindy KT, Karasözen B (2019) High-order integral nodal discontinuous Gegenbauer–Galerkin method for solving viscous Burgers’ equation. Int J Comput Math 96(10):2039–2078

    Article  MathSciNet  MATH  Google Scholar 

  • Escobedo M, Vázquez JL, Zuazua E (1993) A diffusion-convection equation in several space dimensions. Indiana Univ Math J 42(4):1413–1440

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira LCF, Villamizar-Roa EJ (2006) Self-similar solutions, uniqueness and long-time asymptotic behavior for semilinear heat equations. Differ Integral Equ 19(12):1349–1370

    MathSciNet  MATH  Google Scholar 

  • Figueiredo Camargo R, Capelas de Oliveira E, Vaz J Jr (2009) On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator. J Math Phys 50:123518

    Article  MathSciNet  MATH  Google Scholar 

  • Fino A, Kirane M (2012) Qualitative properties of solutions to a time-space fractional evolution equation. Quart Appl Math 70(1):133–157

    Article  MathSciNet  MATH  Google Scholar 

  • Fontes M, Verdier O (2009) Time-periodic solutions of the Burgers equation. J Math Fluid Mech 11(2):303–323

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez Plata AR, Capelas de Oliveira E (2018) Variational iteration method in the fractional Burgers equation. J Appl Nonlinear Dyn 7(2):189–196

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes H, Viana A (2021) Existence, symmetries, and asymptotic properties of global solutions for a fractional diffusion equation with gradient nonlinearity. Partial Differ Equ Appl 2(1):Paper No. 17

    Article  MathSciNet  MATH  Google Scholar 

  • Hanaç E (2019) On the evolution of solutions of Burgers equation on the positive quarter-plane. Demonstr Math 52(1):237–248

    Article  MathSciNet  MATH  Google Scholar 

  • Hashimoto I, Matsumura A (2019) Asymptotic behavior toward nonlinear waves for radially symmetric solutions of the multi-dimensional Burgers equation. J Differ Equ 266(5):2805–2829

    Article  MathSciNet  MATH  Google Scholar 

  • Holden H, Lindstrøm T, Øksendal B, Ubøe J, Zhang TS (1994) The Burgers equation with a noisy force and the stochastic heat equation. Commun Partial Differ Equ 19(1–2):119–141

    Article  MathSciNet  MATH  Google Scholar 

  • Jakubowski T, Serafin G (2016) Pointwise estimates for solutions of fractal Burgers equation. J Differ Equ 261(11):6283–6301

    Article  MathSciNet  MATH  Google Scholar 

  • Jourdain B, Méléard S, Woyczynski WA (2005) Probabilistic approximation and inviscid limits for one-dimensional fractional conservation laws. Bernoulli 11(4):689–714

    Article  MathSciNet  MATH  Google Scholar 

  • Kemppainen J et al (2016) Decay estimates for time-fractional and other non-local in time subdiffusion equations in \({\mathbb{R} }^d\). Math Ann 366(3–4):941–979

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, North-Holland mathematics studies, vol 204. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Kirane M et al (2014) Non-existence of global solutions to a system of fractional diffusion equations. Acta Appl Math 133:235–248

    Article  MathSciNet  MATH  Google Scholar 

  • Kiselev A, Nazarov F, Shterenberg R (2008) Blow up and regularity for fractal Burgers equation. Dyn Partial Differ Equ 5(3):211–240

    Article  MathSciNet  MATH  Google Scholar 

  • Lima MES, Capelas de Oliveira E, Viana AC (2022) A Yamazaki-type estimate to a space-time fractional diffusion equation. Revista Eletrônica Paulista de Matemática 22:48–57

    Article  MATH  Google Scholar 

  • Mainardi F (2022) Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, 2nd edn. World Scientific, Hackensack

    Book  MATH  Google Scholar 

  • Mann JA Jr, Woyczynski WA (2001) Growing fractal interface in the presence of self-similar hopping surface diffusion. Phys A 291:159–183

    Article  MATH  Google Scholar 

  • Mao Z, Karniadakis GE (2017) Fractional Burgers equation with nonlinear non-locality: spectral vanishing viscosity and local discontinuous Galerkin methods. J Comput Phys 336:143–163

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2000) The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:177

    Article  MathSciNet  MATH  Google Scholar 

  • Miao C, Wu G (2009) Global well-posedness of the critical Burgers equation in critical Besov spaces. J Differ Equ 247(6):1673–1693

    Article  MathSciNet  MATH  Google Scholar 

  • Momani S (2006) Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos Solitons Fractals 28(4):930–937

    Article  MathSciNet  MATH  Google Scholar 

  • Okuka AS, Zorica D (2020) Fractional Burgers models in creep and stress relaxation tests. Appl Math Model 77(part 2):1894–1935

    Article  MathSciNet  MATH  Google Scholar 

  • Pedron IT, Mendes RS (2005) Anomalous diffusion and generalized diffusion equations. Revista Brasileira de Ensino de Física 27:251–258

    Article  MATH  Google Scholar 

  • Pozo JC, Vergara V (2019) Fundamental solutions and decay of fully non-local problems. Discrete Contin Dyn Syst 39(1):639–666

    Article  MathSciNet  MATH  Google Scholar 

  • Schneider WR, Wyss W (1989) Fractional diffusion and wave equations. J Math Phys 30(1):134–144

    Article  MathSciNet  MATH  Google Scholar 

  • Shi B, Wang W (2020) Existence and blow-up of solutions to the 2D Burgers equation with supercritical dissipation. Discrete Contin Dyn Syst B 25(3):1169–1192

    MathSciNet  MATH  Google Scholar 

  • Teodoro GS, Tenreiro Machado JA, Capelas de Oliveira E (2019) A review of definitions of fractional derivatives and other operators. J Comput Phys 388:195–208

    Article  MathSciNet  MATH  Google Scholar 

  • Vanterler da Costa Sousa J, Frederico GSF, Capelas de Oliveira E (2020) \(\psi \)-Hilfer pseudo-fractional operator: new results about fractional calculus. Comput Appl Math 39(4):Paper No. 254 (MR4142891)

    Article  MathSciNet  MATH  Google Scholar 

  • Vázquez JL (2018) Asymptotic behaviour for the fractional heat equation in the Euclidean space. Complex Variables Ellipt Equ 63(7–8):1216–1231 (MR4142891)

    Article  MathSciNet  MATH  Google Scholar 

  • Yamazaki M (2000) The Navier–Stokes equations in the weak-\(L^n\) space with time-dependent external force. Math Ann 317(4):635–75

    Article  MathSciNet  MATH  Google Scholar 

  • Yun D, Protas B (2018) Maximum rate of growth of enstrophy in solutions of the fractional Burgers equation. J Nonlinear Sci 28(1):395–422

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Liu F, Lin Z, Anh V (2019) Analytical and numerical solutions of a multi-term time-fractional Burgers’ fluid model. Appl Math Comput 356:1–12

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A. Viana is partially supported by CNPq under the Grant number 308080/2021-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arlúcio Viana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, E.C., de Sousa Lima, M.E. & Viana, A. Self-similar solutions for the fractional viscous Burgers equation in Marcinkiewicz spaces. Comp. Appl. Math. 44, 94 (2025). https://doi.org/10.1007/s40314-024-03012-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-03012-x

Keywords

Mathematics Subject Classification

Navigation