Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Existence and multiplicity for fractional differential equations with \(m(\xi )\)-Kirchhoff type-equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we first investigate the Palais-Smale compactness condition of the energy functional associated to a \(m(\xi )\)-Kirchhoff-type operator in the appropriate fractional space setting. In this sense, using the Mountain Pass Theorem and the Fountain Theorem, we investigate the existence and multiplicity of weak solutions for a new class of fractional differential equations with \(m(\xi )\)-Kirchhoff-type equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors are very grateful to the anonymous reviewers for their useful comments that led to improvement of the manuscript. Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  • Acerbi E, Mingione G (2005) Gradient estimates for the \(p(x)\)-Laplacian system, pp 117–148

  • Afrouzi GA, Mirzapour M (2013) Eigenvalue problems for \(p(x)\)-Kirchhoff type equations. Electron J Differ Equ 253:1–10

    MathSciNet  Google Scholar 

  • Ambrosio V (2022) A Kirchhoff type equation in \({\mathbb{R} }^{N}\) involving the fractional \((p, q)\)-Laplacian. J Geom Anal 32(4):135

    Article  Google Scholar 

  • Ambrosio V, Isernia T, Radulescu VD (2021) Concentration of positive solutions for a class of fractional \(p\)-Kirchhoff type equations. Proc R Soc Edinb Sect A Math 151(2):601–651

    Article  MathSciNet  Google Scholar 

  • Antontsev S, Chipot M, Xiw Y (2007) Uniqueness results for equations of the \(p(x)\)-Laplacian type. Adv Math Sci Appl 17(1):287–304

    MathSciNet  Google Scholar 

  • Applebaum D (2009) Levy processes and stochastic calculus, 2nd edn. Cambridge studies in advanced mathematics, vol 116. Cambridge University Press, Cambridge,

  • Azroul E, Benkirane A, Shimi M, Srati M (2021) On a class of fractional \(p(x)\)-Kirchhoff type problems. Appl Anal 100(2):383–402

    Article  MathSciNet  Google Scholar 

  • Binlin Z, Radulescu VD, Wang L (2019) Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian. Proc R Soc Edinb Sect A Math 149(4):1061–1081

    Article  MathSciNet  Google Scholar 

  • Bouabdallah M, Chakrone O, Chehabi M, Jiabin Z (2023) Solvability of a nonlocal fractional p-Kirchhoff type problem. Rendiconti del Circolo Matematico di Palermo Series 2 72(8):3971–3985

    Article  MathSciNet  Google Scholar 

  • Boudjeriou T (2020) On the diffusion \(p(x)\)-Laplacian with logarithmic nonlinearity. J Ellip Parabol Equ 6(2):773–794

    Article  MathSciNet  Google Scholar 

  • Bucur C, Valdinoci E (2016) Nonlocal diffusion and applications, vol 1. Springer, Cham

    Book  Google Scholar 

  • Byun S-S, Ok J (2016) On \(W^{1, q(\cdot )}\)-estimates for elliptic equations of \(p(x)\)-Laplacian type. J Math Pures Appl 106(3):512–545

    Article  MathSciNet  Google Scholar 

  • Caffarelli L (2012) Nonlocal equations, drifts and games. Nonlinear Partial Differ Equ 7:37–52

    Article  MathSciNet  Google Scholar 

  • Cen J, Vetro C, Zeng S (2023) A multiplicity theorem for double phase degenerate Kirchhoff problems. Appl Math Lett 146:108803

    Article  MathSciNet  Google Scholar 

  • Chabrowski J, Fu Y (2005) Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain. J Math Anal Appl 306(2):604–618

    Article  MathSciNet  Google Scholar 

  • Chen Y, Levine S, Rao M (2006) Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math 66(4):1383–1406

    Article  MathSciNet  Google Scholar 

  • Cont R, Tankov P (2004) Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series, Boca Raton

    Google Scholar 

  • Dai G, Ma R (2011) Solutions for a \(p(x)\)-Kirchhoff type equation with Neumann boundary data. Nonlinear Anal Real World Appl 12(5):2666–2680

    Article  MathSciNet  Google Scholar 

  • Ebmeyer C, Liu WB (2008) Finite element approximation of the fast diffusion and the porous medium equations. SIAM J Numer Anal 46(5):2393–2410

    Article  MathSciNet  Google Scholar 

  • Ezati R, Nyamoradi N (2021) Existence of solutions to a Kirchhoff \(\psi \)-Hilfer fractional \(p\)-Laplacian equations. Math Methods Appl Sci 44(17):12909–12920

    Article  MathSciNet  Google Scholar 

  • Fan X (2011) Existence and uniqueness for the \(p(x)\)-Laplacian-Dirichlet problems. Math Nachric 284(11–12):1435–1445

    Article  MathSciNet  Google Scholar 

  • Fan X-L, Zhang Q-H (2003) Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal 52(8):1843–1852

    Article  MathSciNet  Google Scholar 

  • Gao Y, Luo X, Zhen M (2024) Existence and classification of positive solutions for coupled purely critical Kirchhoff system. Bull Math Sci 2024:2450002

    Article  MathSciNet  Google Scholar 

  • Hamdani MK, Harrabi A, Mtiri F, Repovs DD (2020) Existence and multiplicity results for a new \(p(x)\)-Kirchhoff problem. Nonlinear Anal 190:111598

    Article  MathSciNet  Google Scholar 

  • Horrigue S, Alsulami M, Alsaeedi BA (2023) Existence result to a Kirchhoff \(\psi \)-Hilfer fractional equations with \(p\)-Laplacian operator via Nehari method. In: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA). IEEE

  • Lapa EC (2023) Global solutions for a nonlinear Kirchhoff type equation with viscosity. Opuscula Math 43:5

    Article  MathSciNet  Google Scholar 

  • Laskin N (2000) Fractional quantum mechanics and Levy path integrals. Phys Lett A 268:298–305

    Article  MathSciNet  Google Scholar 

  • Li Q, Han Y (2022) Existence and multiplicity of positive solutions to a \(p\)-Kirchhoff-type equation. Bull Malays Math Sci Soc 45(4):1789–1810

    Article  MathSciNet  Google Scholar 

  • Liu Z, Motreanu D, Zeng S (2023) Multiple solutions for a Kirchhoff-type problem with vanishing nonlocal term and fractional \(p\)-Laplacian. Front Math 18(5):1067–1082

    Article  MathSciNet  Google Scholar 

  • Lv P, Lin G, Lv X (2024) The asymptotic behaviors of solutions for higher-order \((m_1, m_2)\)-coupled Kirchhoff models with nonlinear strong damping. Demonstratio Math 56(1):20220197

    Article  MathSciNet  Google Scholar 

  • Nezza D, Eleonora GP, Valdinoci E (2012) Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math 136(5):521–573

    Article  MathSciNet  Google Scholar 

  • Pan N, Zhang B, Cao J (2016) Weak solutions for parabolic equations with \(p(x)\)-growth. Electron J Differ Equ 209:15

    MathSciNet  Google Scholar 

  • Rajagopal KR, Ruzicka M (1996) On the modeling of electrorheological materials. Mech Res Commun 23(4):401–407

    Article  Google Scholar 

  • Rajagopal KR, Ruzicka M (2001) Mathematical modeling of electrorheological materials. Contin Mech Thermodyn 13(1):59–78

    Article  Google Scholar 

  • Rionero S (2013) Triple diffusive convection in porous media. Acta Mech 224(2):447–458

    Article  MathSciNet  Google Scholar 

  • Rzymowski W (2002) One-dimensional Kirchhoff equation. Nonlinear Anal 48(2):209–221

    Article  MathSciNet  Google Scholar 

  • Shibata T (2022) Bifurcation diagrams of one-dimensional Kirchhoff-type equations. Adv Nonlinear Anal 12(1):356–368

    Article  MathSciNet  Google Scholar 

  • Sousa JVDC (2022) Existence and uniqueness of solutions for the fractional differential equations with \(p\)-Laplacian in \({\mathbb{H} }^{\nu,\eta; \psi }_{p}\). J Appl Anal Comput 12(2):622–661

    MathSciNet  Google Scholar 

  • Sousa JVDC (2023) Fractional Kirchhoff-type systems via sub-supersolutions method in \(H^{\alpha ,\beta ; \psi }_{p}(\Omega )\). Rend Circ Mat Palermo II Ser 2:1–13

  • Sousa JVDC, Capelas de Oliveira E (2018) On the \(\psi \)-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simul 60:72–91

    Article  MathSciNet  Google Scholar 

  • Sousa JVDC, Ledesma CT, Pigossi M, Zuo J (2022a) Nehari manifold for weighted singular fractional \(p\)-Laplace equations. Bull Braz Math Soc 53(4):1245–1275

    Article  MathSciNet  Google Scholar 

  • Sousa JVDC, Zuo J, O’Regan D (2022b) The Nehari manifold for a \(\psi \)-Hilfer fractional \(p\)-Laplacian. Appl Anal 101(14):5076–5106

    Article  MathSciNet  Google Scholar 

  • Sousa J, Lima KB, Tavares LS (2023a) Existence of solutions for a singular double phase problem involving a \(\psi \)-Hilfer fractional operator via Nehari manifold. Qual Theory Dyn Syst 22(3):1–26

    Article  MathSciNet  Google Scholar 

  • Sousa JVDC, Lamine M, Tavares LS (2023b) Generalized telegraph equation with fractional \(m(\xi )\)-Laplacian. Minimax Theory Appl 08(2):423–441

    MathSciNet  Google Scholar 

  • Sousa JVDC, Kucche KD, Nieto JJ (2024) Existence and multiplicity of solutions for fractional \(\kappa (\xi )\)-Kirchhoff-type equation. Qual Theory Dyn Sys 23(1):27

    Article  MathSciNet  Google Scholar 

  • Srivastava HM, Nain AK, Vats RK, Das P (2023) A theoretical study of the fractional-order \(p\)-Laplacian nonlinear Hadamard type turbulent flow models having the Ulam-Hyers stability. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 117(4):160

    Article  MathSciNet  Google Scholar 

  • Straughan B (2018) Bidispersive double diffusive convection. Int J Heat Mass Transf 126:504–508

    Article  Google Scholar 

  • Sun X, Song Y, Liang S, Zhang B (2023) Critical Kirchhoff equations involving the \(p\)-sub-Laplacians operators on the Heisenberg group. Bull Math Sci 13(02):2250006

    Article  MathSciNet  Google Scholar 

  • Tian J, Zhang B (2024) A fractional profile decomposition and its application to Kirchhoff-type fractional problems with prescribed mass. Adv Nonlinear Anal 13(1):20240029

    Article  MathSciNet  Google Scholar 

  • Vázquez JL (2006) Smoothing and decay estimates for nonlinear diffusion equations: equations of porous medium type, vol 33. OUP, Oxford

    Book  Google Scholar 

  • Vetro C (2022) Variable exponent \(p(x)\)-Kirchhoff type problem with convection. J Math Anal Appl 506(2):125721

    Article  MathSciNet  Google Scholar 

  • Wang T, Yang Y, Guo H (2023) Nodal solutions with a prescribed number of nodes for the Kirchhoff-type problem with an asymptotically cubic term. Adv Nonlinear Anal 12(1):20220323

    Article  MathSciNet  Google Scholar 

  • Xiang M, Zhang B, Guo X (2015) Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem. Nonlinear Anal Theory Methods Appl 120:299–313

    Article  MathSciNet  Google Scholar 

  • Zhang J (2022) Existence results for a Kirchhoff-type equations involving the fractional \(p_{1}(x), p_{2}(x)\)-Laplace operator. Collectanea Math 2022:1–23

    Google Scholar 

  • Zhao M, Song Y, Repovš DD (2024) On the \(p\)-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy–Littlewood–Sobolev nonlinearity. Demonstratio Math 57(1):20230124

    Article  Google Scholar 

  • Zuo J, An T, Fiscella A (2021) A critical Kirchhoff?type problem driven by a \(p(\cdot )\)-fractional Laplace operator with variable \(s(\cdot )\)-order. Math Methods Appl Sci 44(1):1071–1085

    Article  MathSciNet  Google Scholar 

Download references

Funding

S. I. Moreira thanks the CNPq for financial support through the Project 310825/2022-9, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Each of the authors contributed to each part of this study equally. All authors read and proved the final vision of the manuscript.

Corresponding author

Correspondence to J. Vanterler da C. Sousa.

Ethics declarations

Conflict of interest

There is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feitosa, E.F.S., Sousa, J.V.d.C., Moreira, S.I. et al. Existence and multiplicity for fractional differential equations with \(m(\xi )\)-Kirchhoff type-equation. Comp. Appl. Math. 44, 19 (2025). https://doi.org/10.1007/s40314-024-02980-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02980-4

Keywords

Mathematics Subject Classification

Navigation