Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A meshless local Galerkin method for solving a class of nonlinear time-dependent mixed integral equations on non-rectangular 2D domains

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This article describes an effective method for the numerical solution of nonlinear time-dependent Volterra-Fredholm integral equations derived from simulating the spatio-temporal spread of an epidemic. At first, the proposed method applies the piecewise linear interpolation technique to discretize the temporal direction. Then, to obtain a full-discrete scheme, the moving least squares (MLS) approach as shape functions in the discrete Galerkin scheme is used to approximate the solution on the domain space. The MLS involves a weighted local least square given on a set of scattered data to estimate multivariate functions. By inheriting the features of the MLS, the offered method can be flexibly employed on non-rectangular domains without any mesh generation on the solution domain. The method’s algorithm is uncomplicated and direct, making it effortlessly executable on a standard PC with regular specifications. The error analysis and convergence rate of the proposed scheme are also discussed. The efficiency and accuracy of the new method are tested by some mixed integral equations on various non-rectangular domains together with an application of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Almasieh H, Nazari Meleh J (2014) Numerical solution of a class of mixed two-dimensional nonlinear Volterra-Fredholm integral equations using multiquadric radial basis functions. J. Comput. Appl. Math. 260:173–179

    Article  MathSciNet  Google Scholar 

  • Asadi-Mehregan F, Assari P, Dehghan M (2022) The numerical solution of a mathematical model of the Covid-19 pandemic utilizing a meshless local discrete Galerkin method. Eng. Comput. 39:3327–3351. https://doi.org/10.1007/s00366-022-01749-9

    Article  Google Scholar 

  • Asadi-Mehregan F, Assari P, Dehghan M (2023) On the numerical solution of a population growth model of a species living in a closed system based on the moving least squares scheme. Int. J. Comput. Math. 100:1757–1778

    Article  MathSciNet  Google Scholar 

  • Assari P (2019) On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis. Eng. Comput. 35:893–916

    Article  Google Scholar 

  • Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Appl. Numer. Math. 123:137–158

    Article  MathSciNet  Google Scholar 

  • Assari P, Dehghan M (2019) On the numerical solution of nonlinear integral equations on non-rectangular domains utilizing thin plate spline collocation method. Proc. Indian Acad. Sci. (Math. Sci.) 129:1–33

    Article  MathSciNet  Google Scholar 

  • Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J. Comput. Appl. Math. 239(1):72–92

    Article  MathSciNet  Google Scholar 

  • Atkinson KE (1973) The numerical evaluation of fixed points for completely continuous operators, SIAM. J. Numer. Anal. 10:799–807

    Article  MathSciNet  Google Scholar 

  • Atkinson KE (1997) The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2):117–127

    Article  MathSciNet  Google Scholar 

  • Banifatemi E, Razzaghi M, Yousefi S (2007) Two-dimensional Legendre wavelets methods for the mixed Volterra-Fredholm integral equations. J. Vibr. Control 13:1667–1675

    Article  MathSciNet  Google Scholar 

  • Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2):229–256

    Article  MathSciNet  Google Scholar 

  • Brunner H (1990) On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods. SIAM J. Numer. Anal. 27(4):987–1000

    Article  MathSciNet  Google Scholar 

  • Brunner H (2004) Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, New York

    Book  Google Scholar 

  • Cardone A, Messina E, Russo E (2006) A fast iterative method for discretized Volterra-Fredholm integral equations. J. Comput. Appl. Math. 189:568–579

    Article  MathSciNet  Google Scholar 

  • Diekmann O (1978) Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol. 6:109–130

    Article  MathSciNet  Google Scholar 

  • Fang W, Wang Y, Xu Y (2004) An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J. Sci. Comput. 20(2):277–302

    Article  MathSciNet  Google Scholar 

  • Fasshauer GE (2005) Meshfree methods. Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  • Ghasemi M, Tavassoli Kajani M, Babolian E (2007) Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method. App. Math. Comput. 188:446–449

    Article  MathSciNet  Google Scholar 

  • Hadizadeh-Yazdi M, Kazemi-Gelian GH (2008) Error estimate in the sinc collocation method for Volterra-Fredholm integral equations based on de transformation. Electron. Trans. Numer. Anal. 30:75–87

    MathSciNet  Google Scholar 

  • Hafez RM, Doha EH, Bhrawy AH, Baleanu D (2017) Numerical solution of two-dimensional mixed Volterra-Fredholm integral equations via Bernoulli collocation method. Roman. J. Phys. 62:111

    Google Scholar 

  • Hon YC, Mao XZ (1998) An efficient numerical scheme for Burgers equation. Appl. Math. Comput. 95:37–50

    MathSciNet  Google Scholar 

  • Kauthen JP (1989) Continuous time collocation method for Volterra-Fredholm integral equations. Numer. Math. 56:409–424

    Article  MathSciNet  Google Scholar 

  • Kitipornchai S, Liew KM, Cheng Y (2005) A boundary element-free method (BEFM) for three-dimensional elasticity problems. Comput. Mech. 36:13–20

    Article  Google Scholar 

  • Kress R (2013) Linear Integral Equations. Applied Mathematical Sciences 82. Springer, New York

    Google Scholar 

  • Laeli Dastjerdi H, Maalek Ghaini FM, Hadizadeh M (2012) A meshless approximate solution of mixed Volterra-Fredholm integral equations. Int. J. Comput. Math. 90:1–11

    Google Scholar 

  • Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math. Comput. 37(155):141–158

    Article  MathSciNet  Google Scholar 

  • Li X (2011) Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl. Numer. Math. 61(12):1237–1256

    Article  MathSciNet  Google Scholar 

  • Li X, Li S (2016) On the stability of the moving least squares approximation and the element-free Galerkin method. Comput. Math. Appl. 72:1515–1531

    Article  MathSciNet  Google Scholar 

  • Li X, Zhu J (2009) A Galerkin boundary node method for biharmonic problems. Eng. Anal. Bound. Elem. 33(6):858–865

    Article  MathSciNet  Google Scholar 

  • Liew KM, Cheng Y, Kitipornchai S (2006) Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems. Numer. Methods Eng. 65(8):1310–1332

    Article  Google Scholar 

  • Maleknejad K, Hadizadeh M (1999) A new computational method for Volterra-Fredholm integral equations. Comput. Math. Appl. 37:1–8

    Article  MathSciNet  Google Scholar 

  • Maleknejad K, Mahdian K (2009) Solving nonlinear mixed Volterra-Fredholm integral equations. Chaos Solitons Fractals 42:2760–2764

    Article  Google Scholar 

  • Mirzaei D, Dehghan M (2010) A meshless based method for solution of integral equations. Appl. Numer. Math. 60(3):245–262

    Article  MathSciNet  Google Scholar 

  • Ordokhani Y (2007) A collocation method for solving nonlinear differential equations via hybrid of rationalized Haar functions. J. Sci. 7(3):223–232

    Google Scholar 

  • Pachpatte BG (1986) On mixed Volterra-Fredholm type integral equations. Indian. J. Pure. Appl. Math. 17(4):488–496

    MathSciNet  Google Scholar 

  • Salehi R, Dehghan M (2013) A moving least square reproducing polynomial meshless method. Appl. Numer. Math. 69:34–58

    Article  MathSciNet  Google Scholar 

  • Sladek J, Sladek V, Atluri SN (2000) Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneous material properties. Comput. Mech. 24:456–462

    Article  Google Scholar 

  • Weiss R (1974) On the approximation of fixed points of nonlinear compact operators. SIAM J. Numer. Anal. 11(3):550–555

    Article  MathSciNet  Google Scholar 

  • Wendland H (2005) Scattered Data Approximation. Cambridge University Press, New York

    Google Scholar 

  • Xie Mukherjee Y, Mukherjee S (1997) The boundary node method for potential problems. Int. J. Numer. Methods Eng. 40(5):797–815

    Article  Google Scholar 

  • Yalcinbas S (2002) Taylor polynomial solutions of nonlinear Volterr-Fredholm integral equations. Appl. Math. Comput. 127:195–206

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for their valuable comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Assari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi-Mehregan, F., Assari, P. & Dehghan, M. A meshless local Galerkin method for solving a class of nonlinear time-dependent mixed integral equations on non-rectangular 2D domains. Comp. Appl. Math. 44, 16 (2025). https://doi.org/10.1007/s40314-024-02953-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02953-7

Keywords

Mathematics Subject Classification

Navigation