Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Numerical solution of Volterra–Fredholm integral equation systems by operational matrices of integration based on Bernstein multi-scaling polynomials

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper introduces a new method which is used to obtain numerical solutions of Volterra–Fredholm linear integral equation systems. In the proposed method, the functions and integrals of the system are approximated in terms of Bernstein multi-scale polynomials. Then, these approximations are applied to the Volterra–Fredholm integral equations system, which turns it into a linear system that is solvable by conventional methods. Then, in addition to convergence analysis, the accuracy and efficiency of the proposed method are evaluated by providing different examples and comparing their results with other similar methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdul Karim SA, Khan F, Basit M (2022) Symmetric Bernstein polynomial approach for the system of Volterra integral equations on arbitrary interval and its convergence analysis. Symmetry 14(7):1343

    Article  Google Scholar 

  • Adibi H, Assari P (2010) Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind. Math Probl Eng 2010:138408

    Article  MathSciNet  MATH  Google Scholar 

  • Aggarwal S, Sharma N (2019) Laplace transform for the solution of first kind linear Volterra integral equation. J Adv Res Appl Math Stat 4(3–4):16–23

    Google Scholar 

  • Almasieh H, Roodaki M (2012) Triangular functions method for the solution of Fredholm integral equations system. Ain Shams Eng J 3(4):411–416

    Article  MATH  Google Scholar 

  • Assari P, Dehghan M (2018) The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions. Appl Numer Math 131:140–157

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson KE (1967) The numerical solution of Fredholm integral equations of the second kind. SIAM J Numer Anal 4(3):337–348

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson K, Han W (2009) Numerical Solution of Fredholm Integral Equations of the Second Kind. In: Theoretical Numerical Analysis. Texts in Applied Mathematics, vol 39. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0458-4_12

  • Babolian E, Mordad M (2011) A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions. Comput Math Appl 62(1):187–198

    Article  MathSciNet  MATH  Google Scholar 

  • Basit M, Khan F (2022) An effective approach to solving the system of Fredholm integral equations based on Bernstein polynomial on any finite interval. Alex Eng J 61(4):2611–2623

    Article  Google Scholar 

  • Bonnet M (1995) Boundary integral equation methods for solids and fluids. Wiley, New York

    Google Scholar 

  • Çakir M, Güneş B (2022) A new difference method for the singularly perturbed Volterra–Fredholm integro-differential equations on a Shishkin mesh. Hacettepe J Math Stat 51(3):787–799

    MathSciNet  Google Scholar 

  • Cakir M, Gunes B (2022) Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations. Georgian Math J 29(2):193–203

    Article  MathSciNet  MATH  Google Scholar 

  • Caliò F, Garralda-Guillem A, Marchetti E, Galán MR (2013) Numerical approaches for systems of Volterra–Fredholm integral equations. Appl Math Comput 225:811–821

    MathSciNet  MATH  Google Scholar 

  • Chew WC, Tong MS, Hu B (2008) Integral equation methods for electromagnetic and elastic waves. Synth Lect Comput Electromagn 3(1):1–241

    Article  Google Scholar 

  • Dorey P, Tateo T (1999) Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations. J Phys A Math Gen 32(38):L419

    Article  MathSciNet  MATH  Google Scholar 

  • Farnoosh R, Ebahimi M (2008) Monte Carlo method for solving Fredholm integral equations of the second kind. Appl Math Comput 195(1):309–315

    MathSciNet  MATH  Google Scholar 

  • Farshadmoghadam F, Deilami Azodi H, Yaghouti MR (2021) An improved radial basis functions method for the high-order Volterra-Fredholm integro-differential equations. Math Sci. https://doi.org/10.1007/s40096-021-00432-2

  • Gal SG (2009) Approximation by complex Bernstein and convolution type operators, vol 8. World Scientific, Singapore

    MATH  Google Scholar 

  • Golbabai A, Keramati B (2008) Modified homotopy perturbation method for solving Fredholm integral equations. Chaos Solitons Fractals 37(5):1528–1537

    Article  MathSciNet  MATH  Google Scholar 

  • Gunes B (2021) A novel computational method for solving nonlinear Volterra integro differential equation. Kuwait J Sci 48(1):1–9

    MathSciNet  MATH  Google Scholar 

  • Hamoud A, Mohammed N, Ghadle K (2019) A study of some effective techniques for solving Volterra–Fredholm integral equations. Dyn Contin Discrete Impuls Syst Ser A Math Anal 26:389–406

    MathSciNet  MATH  Google Scholar 

  • He J-H, Taha MH, Ramadan MA, Moatimid GM (2022) A combination of Bernstein and improved block-pulse functions for solving a system of linear Fredholm integral equations. Math Probl Eng 2022:1–12

    Google Scholar 

  • Henrion D, Garulli A (2005) Positive polynomials in control, vol 312. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hesameddini E, Shahbazi M (2017) Solving system of Volterra–Fredholm integral equations with Bernstein polynomials and hybrid Bernstein block-pulse functions. J Comput Appl Math 315:182–194

    Article  MathSciNet  MATH  Google Scholar 

  • Ishola CY, Taiwo OA, Adebisi AF, Peter OJ (2022) Numerical solution of two-dimensional Fredholm integro-differential equations by Chebyshev integral operational matrix method. J Appl Math Comput Mech 21(1):29–40

    Article  MathSciNet  Google Scholar 

  • Jaswon MA (1977) Integral equation methods in potential theory and elastostatics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Javidi M, Golbabai A (2007) A numerical solution for solving system of Fredholm integral equations by using homotopy perturbation method. Appl Math Comput 189(2):1921–1928

    MathSciNet  MATH  Google Scholar 

  • Kasumo C, Moyo E (2020) Approximate solutions of nonlinear Volterra integral equations of the first kind. Appl Math Sci 14(18):867–880

    Google Scholar 

  • Khidir AA (2022) A numerical technique for solving Volterra-Fredholm integral equations using Chebyshev spectral method. Ricerche mat. https://doi.org/10.1007/s11587-022-00692-7

  • Kreyszig E (1978) Introductory functional analysis with applications, vol 1. Wiley, New York

    MATH  Google Scholar 

  • Kythe P, Puri P (2011) Computational methods for linear integral equations. Springer, Berlin

    MATH  Google Scholar 

  • Lienert M, Tumulka R et al (2019) A new class of Volterra-type integral equations from relativistic quantum physics. J Integral Equ Appl 31(4):535–569

    Article  MathSciNet  MATH  Google Scholar 

  • Lindgren EB, Stace AJ, Polack E, Maday Y, Stamm B, Besley E (2018) An integral equation approach to calculate electrostatic interactions in many-body dielectric systems. J Comput Phys 371:712–731

    Article  MathSciNet  MATH  Google Scholar 

  • Lorentz GG (2013) Bernstein polynomials. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Ma X, Huang C (2021) Recovery of high order accuracy in spectral collocation method for linear Volterra integral equations of the third-kind with non-smooth solutions. J Comput Appl Math 392:113458

    Article  MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Sohrabi S (2007) Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets. Appl Math Comput 186(1):836–843

    MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Aghazadeh N, Rabbani M (2006) Numerical solution of second kind Fredholm integral equations system by using a Taylor-series expansion method. Appl Math Comput 175(2):1229–1234

    MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Sohrabi S, Rostami Y (2007) Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials. Appl Math Comput 188(1):123–128

    MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Almasieh H, Roodaki M (2010) Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations. Commun Nonlinear Sci Numer Simul 15(11):3293–3298

    Article  MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Hashemizadeh E, Ezzati R (2011) A new approach to the numerical solution of Volterra integral equations by using Bernstein’s approximation. Commun Nonlinear Sci Numer Simul 16(2):647–655

    Article  MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Basirat B, Hashemizadeh E (2012) A Bernstein operational matrix approach for solving a system of high order linear Volterra–Fredholm integro-differential equations. Math Comput Modell 55(3–4):1363–1372

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzaee F, Hadadiyan E (2016) Numerical solution of Volterra–Fredholm integral equations via modification of hat functions. Appl Math Comput 280:110–123

    MathSciNet  MATH  Google Scholar 

  • Mohammad M (2019) Biorthogonal-wavelet-based method for numerical solution of Volterra integral equations. Entropy 21(11):1098

    Article  MathSciNet  Google Scholar 

  • Muftahov I, Tynda A, Sidorov D (2017) Numeric solution of Volterra integral equations of the first kind with discontinuous kernels. J Comput Appl Math 313:119–128

    Article  MathSciNet  MATH  Google Scholar 

  • Negarchi N, Nouri K (2018) Numerical solution of Volterra–Fredholm integral equations using the collocation method based on a special form of the Müntz–Legendre polynomials. J Comput Appl Math 344:15–24

    Article  MathSciNet  MATH  Google Scholar 

  • Nemati S (2015) Numerical solution of Volterra–Fredholm integral equations using Legendre collocation method. J Comput Appl Math 278:29–36

    Article  MathSciNet  MATH  Google Scholar 

  • Nemati S, Lima PM, Torres DF (2021) Numerical solution of a class of third-kind Volterra integral equations using Jacobi wavelet. Numer Algorithms 86(2):675–691

    Article  MathSciNet  MATH  Google Scholar 

  • Polyanin AD, Manzhirov AV (2008) Boundary integral equation methods for solids and fluids, handbook of integral equations. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Pongratz T, Kibies P, Eberlein L, Tielker N, Hölzl C, Imoto S, Erlach MB, Kurrmann S, Schummel PH, Hofmann M et al (2020) Pressure-dependent electronic structure calculations using integral equation-based solvation models. Biophys Chem 257:106258

    Article  Google Scholar 

  • Powell MJD (2022) Approximation theory and methods. Cambridge University Press, Cambridge

    Google Scholar 

  • Rahman M (2007) Integral equations and their applications. WIT Press, Ashurst Lodge

    MATH  Google Scholar 

  • Ramadan MA, Ali MR (2017) Numerical solution of Volterra–Fredholm integral equations using hybrid orthonormal Bernstein and block-pulse functions. Asian Res J Math 4:1–14

    Article  Google Scholar 

  • Ramadan MA, Osheba HS, Hadhoud AR (2022) A numerical method based on hybrid orthonormal Bernstein and improved block-pulse functions for solving Volterra-Fredholm integral equations. Numer. Methods Partial Differ. Eq. https://doi.org/10.1002/num.22876

  • Ramezani M, Mohammadizadeh MR, Shojaee S (2019) A new approach for free vibration analysis of nonuniform tall building structures with axial force effects. Struct Des Tall Spec Build 28(5):e1519

    Article  Google Scholar 

  • Rasham T, Shoaib N, Hussain N, Alamri BA, Arshad M (2019) Multivalued fixed point results in dislocated b-metric spaces with application to the system of nonlinear integral equations. Symmetry 11(1):40

    Article  MATH  Google Scholar 

  • Ray SS, Shau P (2013) Numerical methods for solving Fredholm integral equations of second kind. In: Abstract and applied analysis. Hindawi, London

  • Sahu PK, Ray SS (2014) Numerical solutions for the system of Fredholm integral equations of second kind by a new approach involving semiorthogonal b-spline wavelet collocation method. Appl Math Comput 234(4):368–379

    MathSciNet  MATH  Google Scholar 

  • Sidorov DN, Tynda AN, Muftahov IR (2014) Numerical solution of Volterra integral equations of the first kind with piecewise continuous kernel. Vestnik Yuzhno-Ural’skogo Universiteta Seriya Matematicheskoe Modelirovanie i Programmirovanie 7(3):107–115

    MATH  Google Scholar 

  • Song H, Xiao Y, Chen M (2021) Collocation methods for third-kind Volterra integral equations with proportional delays. Appl Math Comput 388:125509

    MathSciNet  MATH  Google Scholar 

  • Tahmasbi A, Fard OS (2008) Numerical solution of linear Volterra integral equations system of the second kind. Appl Math Comput 201(1–2):547–552

    MathSciNet  MATH  Google Scholar 

  • Usta F, İlkhan M, Evren Kara E (2021) Numerical solution of Volterra integral equations via Szász–Mirakyan approximation method. Math Methods Appl Sci 44(9):7491–7500

    Article  MathSciNet  MATH  Google Scholar 

  • Volakis J (2012) Integral equation methods for electromagnetics. The Institution of Engineering and Technology, London

    Book  Google Scholar 

  • Wang Q, Wang K, Chen S (2014) Least squares approximation method for the solution of Volterra–Fredholm integral equations. J Comput Appl Math 272:141–147

    Article  MathSciNet  MATH  Google Scholar 

  • Wannamaker PE, Hohmann GW, SanFilipo WA (1984) Electromagnetic modeling of three dimensional bodies in layered earths using integral equations. Geophysics 49(1):60–74

    Article  Google Scholar 

  • Wazwaz A-M (2011) Linear and nonlinear integral equations, vol 639. Springer, Berlin

    Book  MATH  Google Scholar 

  • Wu J, Zhou Y, Hang C (2020) A singularity free and derivative free approach for Abel integral equation in analyzing the laser-induced breakdown spectroscopy. Spectrochim Acta Part B At Spectrosc 167:105791

    Article  Google Scholar 

  • Xie G, Zhang J, Huang C, Lu C, Li G (2014) A direct traction boundary integral equation method for three-dimension crack problems in infinite and finite domains. Int J Numer Methods Eng 53(4):575–586

    MathSciNet  MATH  Google Scholar 

  • Yaghoobnia A, Ezzati R (2020) Using Bernstein multi-scaling polynomials to obtain numerical solution of Volterra integral equations system. Comput Appl Math 39:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida K-I, Nishimura N, Kobayashi S (2001) Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D. Int J Numer Methods Eng 50(3):525–547

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous referees, especially for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ezzati.

Additional information

Communicated by Hui Liang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoobnia, A.R., Ezzati, R. Numerical solution of Volterra–Fredholm integral equation systems by operational matrices of integration based on Bernstein multi-scaling polynomials. Comp. Appl. Math. 41, 324 (2022). https://doi.org/10.1007/s40314-022-02036-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02036-5

Keywords

Mathematics Subject Classification

Navigation