Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Hyperspectral image fusion with a new hybrid regularization

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Hyperspectral images usually have higher spectral resolution than the multispectral images. However, the spatial resolution of hyperspectral images is lower, which limits their practical applications. Therefore, to obtain high spatial resolution hyperspectral image (HR-HSI), it is very important to fuse a low spatial resolution hyperspectral image with a high spatial resolution multispectral image in the same scene. In this paper, we propose a new sparse hyperspectral image fusion model. To better model the spatial and spectral characteristics of the HR-HSI, we incorporate a sparse prior, the local low-rank regularization and the total variation based on \(\ell _{1}\) norm. To solve the problem efficiently, we design an alternating direction method of multipliers (ADMM). The experimental results show the effectiveness and competitiveness of our method over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aharon M, Elad M, Bruckstein A (2006) K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54:4311–4322

    Article  MATH  Google Scholar 

  • Bioucas-Dias JM, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J (2013) Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1:6–36

    Article  Google Scholar 

  • Dell’Acqua F, Gamba P, Ferrari A, Palmason JA, Benediktsson JA, Arnason K (2004) Exploiting spectral and spatial information in hyperspectral urban data with high resolution. IEEE Geosci. Remote Sens. 1:322–326

    Article  Google Scholar 

  • Dian R, Li S, Fang L, Bioucas-Dias J (2018) Hyperspectral image super-resolution via local low-rank and sparse representations. IGARSS 2018:4003–4006

    Google Scholar 

  • Dian R, Li S, Fang L, Wei Q (2019) Multispectral and hyperspectral image fusion with spatial-spectral sparse representation. Inf. Fusion 49:262–270

    Article  Google Scholar 

  • Dong W, Fu F, Shi G, Cao X, Wu J, Li G, Li X (2016) Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Trans. Image Process. 25:2337–2352

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman J, Hastie T, Höfling H et al (2007) Pathwise coordinate optimization. Ann. Appl. Stat. 1:302–332

    Article  MathSciNet  MATH  Google Scholar 

  • Ghassemian H (2016) A review of remote sensing image fusion methods. Inf. Fusion 32:75–89

    Article  Google Scholar 

  • Green RO, Eastwood ML, Sarture CM et al (1998) Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65:227–248

    Article  Google Scholar 

  • Han XH, Shi B, Zheng Y (2018) Self-similarity constrained sparse representation for hyperspectral image super-resolution. IEEE Trans. Image Process. 27:5625–5637

    Article  MathSciNet  Google Scholar 

  • Huang B, Song H, Cui H, Peng J, Xu Z (2013) Spatial and spectral image fusion using sparse matrix factorization. IEEE Trans. Geosci. Remote Sens. 52:1693–1704

    Article  Google Scholar 

  • Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment. Electron Lett. 44:800–801

    Article  Google Scholar 

  • Iordache MD, Bioucas-Dias JM, Plaza A (2011) Sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49:2014–2039

    Article  Google Scholar 

  • Kawakami R, Matsushita Y, Wright J, Ben-Ezra M, Tai YW, Ikeuchi K (2011) High-resolution hyperspectral imaging via matrix factorization. CVPR 2011:2329–2336

    Google Scholar 

  • Lanaras C, Baltsavias E, Schindler K (2015) Hyperspectral super-resolution by coupled spectral unmixing. ICCV 2015:3586–3594

    Google Scholar 

  • Lin CH, Ma F, Chi CY, Hsieh CH (2017) A convex optimization-based coupled nonnegative matrix factorization algorithm for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 56:1652–1667

    Article  Google Scholar 

  • Liu MY, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation. CVPR 2011:2097–2104

    Google Scholar 

  • Mairal J, Bach F, Ponce J, Sapiro G (2010) Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11:19–60

    MathSciNet  MATH  Google Scholar 

  • Ravi D, Fabelo H, Callic GM, Yang GZ (2017) Manifold embedding and semantic segmentation for intraoperative guidance with hyperspectral brain imaging. IEEE Trans. Med. Imaging 36:1845–1857

    Article  Google Scholar 

  • Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60:259–268

    Article  MathSciNet  MATH  Google Scholar 

  • Simões M, Bioucas-Dias J, Almeida LB, Chanussot J (2014) A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 53:3373–3388

    Article  Google Scholar 

  • Veganzones MA, Simões M, Licciardi G, Yokoya N, Bioucas-Dias J, Chanussot J (2015) Hyperspectral super-resolution of locally low rank images from complementary multisource data. IEEE Trans. Image Process. 25:274–288

    Article  MathSciNet  MATH  Google Scholar 

  • Wald L (2000) Quality of high resolution synthesised images: Is there a simple criterion?. Third conference “Fusion of Earth data: merging point measurements, raster maps and remotely sensed images”, 99-103

  • Wan Y, Fan Y, Jin M (2021) Application of hyperspectral remote sensing for supplementary investigation of polymetallic deposits in Huaniushan ore region, northwestern China. Sci. Rep. 11:1–12

    Article  Google Scholar 

  • Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Proc. Lett. 9:81–84

    Article  Google Scholar 

  • Wei Q, Bioucas-Dias J, Dobigeon N, Tourneret JY (2015) Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Trans. Geosci. Remote Sens. 53:3658–3668

    Article  Google Scholar 

  • Wei Q, Bioucas-Dias J, Dobigeon N, Tourneret JY, Chen M, Godsill S (2016) Multiband image fusion based on spectral unmixing. IEEE Trans. Geosci. Remote Sens. 54:7236–7249

    Article  Google Scholar 

  • Wu C, Tai XC (2010) Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3:300–339

    Article  MathSciNet  MATH  Google Scholar 

  • Wycoff E, Chan TH, Jia K, Ma WK, Ma Y (2013) A non-negative sparse promoting algorithm for high resolution hyperspectral imaging. ICASSP 2013:1409–1413

    Google Scholar 

  • Yasuma F, Mitsunaga T, Iso D, Nayar SK (2010) Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19:2241–2253

    Article  MathSciNet  MATH  Google Scholar 

  • Yokoya N, Yairi T, Iwasaki A (2011) Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 50:528–537

    Article  Google Scholar 

  • Yuhas RH, Goetz AFH, Boardman JW (1992) Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. JPL Airborne Geosci. Workshop 1:147–149

    Google Scholar 

  • Zhang J, Chen R, Deng C, Wang S (2017) Fast linearized augmented Lagrangian method for Euler’s elastica model. Numer. Math. Theory Methods Appl. 10:98–115

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Yang YF (2013) Nonlinear multigrid method for solving the LLT model. Appl. Math. Comput. 219:4964–4976

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang N, Zhang X, Yang G, Zhu C, Huo L, Feng H (2018) Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sens. Environ. 217:323–339

  • Zhao S, Wang Q, Li Y, Liu S, Wang Z, Zhu L, Wang Z (2017) An overview of satellite remote sensing technology used in China’s environmental protection. Earth Sci. Inf. 10:137–148

    Article  Google Scholar 

  • Zhou Y, Feng L, Hou C, Kung SY (2017) Hyperspectral and multispectral image fusion based on local low rank and coupled spectral unmixing. IEEE Trans. Geosci. Remote Sens. 55:5997–6009

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Foundation for Post Doctorate of China (2020M672484), the Natural Science Foundation of Jiangxi Province (20192BAB211005), and the NNSF of China (61865012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxi Ma.

Additional information

Communicated by Antonio José Silva Neto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Z. & Ma, M. Hyperspectral image fusion with a new hybrid regularization. Comp. Appl. Math. 41, 241 (2022). https://doi.org/10.1007/s40314-022-01950-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01950-y

Keywords

Mathematics Subject Classification

Navigation