Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Inverse eigenvalue problems for skew-Hermitian reflexive and anti-reflexive matrices and their optimal approximations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the inverse eigenvalue problems for skew-Hermitian reflexive and anti-reflexive matrices and their associated optimal approximation problems which are constrained by their partially prescribed eigenpairs are considered, respectively. First, the necessary and sufficient conditions of the solvability for the inverse eigenvalue problems of skew-Hermitian reflexive and anti-reflexive matrices are both derived, and the general solutions are also presented. Then the solutions of the corresponding optimal approximation problems in the Frobenius norm to a given matrix are also given, respectively. Furthermore, we give the algorithms to compute the optimal approximate skew-Hermitian reflexive and anti-reflexive solutions and present some illustrative numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bai Z-J (2003) The solvability conditions for the inverse eigenvalue problem of Hermitian and generalized skew-Hamiltonian matrices and its approximation. Inverse Prob 19:1185–1194

    Article  MathSciNet  Google Scholar 

  • Baksalary JK, Kala R (1980) The matrix equation \(AXB+CYD=E\). Linear Algebra Appl 30:141–147

    Article  MathSciNet  Google Scholar 

  • Ben-Israel A, Greville T (2003) Generalized inverses: theory and applications, 2nd edn. Wiley, Springer, New York

    MATH  Google Scholar 

  • Chen H-C (1988) The SAS domain decomposition method for structural analysis. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL Ph.D. Thesis

  • Chen X (1997) Theorectical methods and its application of designing of structured dynamic in machine. The Mechanical Industry Press, New York (in Chinese)

    Google Scholar 

  • Chen H-C (1998) Generalized reflexive matrices: special properties and applications. SIAM J Matrix Anal Appl 19:140–153

    Article  MathSciNet  Google Scholar 

  • Chen H-C, Samech A (1989) A matrix decomposition method for orthotropic elasticity problems. SIAM J Matrix Anal Appl 10:39–64

    Article  MathSciNet  Google Scholar 

  • Chu MT, Golub GH (2005) Inverse eigenvalue problems: theory, algorithms, and applications. Oxford Science Publications, Oxford University Press, Oxford

    Book  Google Scholar 

  • Chu K, Li N (1994) Designing the Hopfield neural network via pole assignment. Int J Syst Sci 25:669–681

    Article  MathSciNet  Google Scholar 

  • Deng Y, Hu X, Zhang L (2004) The solvability conditions for the inverse eigenvalue problem of the symmetrizable matrices. J Comput Appl Math 163:101–106

    Article  MathSciNet  Google Scholar 

  • Gigola S, Lebtahi L, Thome N (2015) Inverse eigenvalue problem for normal \(J\)-hamiltonian matrices. Appl Math Lett 48:36–40

    Article  MathSciNet  Google Scholar 

  • Huang G-X, Yin F (2011) An inverse eigenproblem and an associated approximation problem for generalized reflexive and anti-reflexive matrices. J Comput Appl Math 235:2888–2895

    Article  MathSciNet  Google Scholar 

  • Joseph K-T (1992) Inverse eigenvalue problem in structure design. AIAA J 10:2890–2896

    Article  Google Scholar 

  • Li N (1997) A matrix inverse eigenvalue problem and its application. Linear Algebra Appl 266:143–152

    Article  MathSciNet  Google Scholar 

  • Li F, Hu X, Zhang L (2008) The generalized reflexive solution for a class of matrix equations \((AX=B, XC=D)\). Acta Math Sci 28:185–193

    Article  MathSciNet  Google Scholar 

  • Liang M-L, Dai L-F (2010) The left and right inverse eigenvalue problems of generalized reflexive and anti-reflexive matrices. J Comput Appl Math 234:743–749

    Article  MathSciNet  Google Scholar 

  • Liu X, Yuan Y (2016) Generalized reflexive and anti-reflexive solutions of \(AX=B\). Calcolo 53:59–66

    Article  MathSciNet  Google Scholar 

  • Liu Z, Lu L, Wang K (2011) The inverse eigenvalue problem of generalized reflexive matrices and its approximation. Appl Math Comput 218:1611–1616

    MathSciNet  MATH  Google Scholar 

  • Peng Z-Y (2005) The inverse eigenvalue problm for Hermitian anti-reflexive matrices and its approximation. Appl Math Comput 162:1377–1389

    MathSciNet  MATH  Google Scholar 

  • Peng Z-Y, Hu X-Y (2003) The reflexive and anti-reflexive solutions of the matrix equation \(AX=B\). Linear Algebra Appl 375:147–155

    Article  MathSciNet  Google Scholar 

  • Peng X-Y, Liu W, Xiong H-J (2011) The constrained inverse eigenvalue problem and its approximation for normal matries. Linear Algebra Appl 435:3115–3123

    Article  MathSciNet  Google Scholar 

  • Sun J-G (1988) Two kinds of inverse eigenvalue problems for real symmetric matrices. Math Numer Sin 3:282–290 (in Chinese)

    MathSciNet  MATH  Google Scholar 

  • Xie D, Sheng Y (2003) Inverse eigenproblem of anti-symmetric and persymmetric matrices and its approximation. Inverse Prob 19:217–225

    Article  MathSciNet  Google Scholar 

  • Xie D, Hu X, Zhang L (2003) The solvability conditions for inverse eigenproblem of symmetric and anti-persymmetric matrices and its approximation. Numer Linear Algebra Appl 10:223–234

    Article  MathSciNet  Google Scholar 

  • Xu W-R, Chen G (2016) An inverse eigenproblem for generalized reflexive matrices with normal \(\{k+1\}\)-potencies. Electron J Linear Algebra 31:100–119

    Article  MathSciNet  Google Scholar 

  • Xu W-R, Chen G (2016) Inverse problems for \((R, S)\)-symmetric matrices in structural dynamic model updating. Comput Math Appl 71:1074–1088

    Article  MathSciNet  Google Scholar 

  • Xu W-R, Chen G, Gong Y (2016) Procrustes problems and inverse eigenproblems for multilevel block \(\varvec {\alpha }\)-circulants. Numer Linear Algebra Appl 23:906–930

    Article  MathSciNet  Google Scholar 

  • Yuan Y-X, Dai H (2008) Generalized reflexive solutions of the matrix equation \(AXB=D\) and an associated optimal approximation problem. Comput Math Appl 56:1643–1649

    Article  MathSciNet  Google Scholar 

  • Yuan S, Liao A, Lei Y (2008) Inverse eigenvalue problems of tridiagonal symmetric matrices and tridiagonal bisymmetric matrices. Comput Math Appl 55:2521–2532

    Article  MathSciNet  Google Scholar 

  • Zhang Z, Hu X, Zhang L (2002) The solvability conditions for the inverse eigenvalue problem of Hermitian-generalized Hamiltonian matrices. Inverse Prob 18:1369–1376

    Article  MathSciNet  Google Scholar 

  • Zhang J-C, Hu X-Y, Zhang L (2009) The \((P, Q)\) generalized reflexive and anti-reflexive solutions of the matrix equation \(AX=B\). Appl Math Comput 209:254–258

    MathSciNet  MATH  Google Scholar 

  • Zhou F-Z (2006) The solvability conditions for the inverse eigenvalue problems of reflexive matrices. J Comput Appl Math 188:180–189

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by joint research project of Laurent Mathematics Center of Sichuan Normal University and National-Local Joint Engineering Laboratory of System Credibility Automatic Verification. The second author is supported by Science and Technology Commission of Shanghai Municipality (Grant No. 18dz2271000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Ru Xu.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WR., Chen, GL. Inverse eigenvalue problems for skew-Hermitian reflexive and anti-reflexive matrices and their optimal approximations. Comp. Appl. Math. 39, 184 (2020). https://doi.org/10.1007/s40314-020-01208-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01208-5

Keywords

Mathematics subject classification

Navigation