Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Evaluating the Variables Affecting Flexibility in FMS by Exploratory and Confirmatory Factor Analysis

  • Original Article
  • Published:
Global Journal of Flexible Systems Management Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the factors from the variables of the flexible manufacturing system (FMS) which affect flexibility in FMS. The study was performed by conducting a cross-sectional survey within manufacturing firms in India through exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). By performing EFA, factor structure is identified whereas CFA verified the factor structure of a set of observed variables. CFA is carried by structural equation modeling (SEM) statistical technique. In this paper, EFA is applied to extract the factors in FMS by The Statistical Package for Social Sciences (SPSS 20) software and confirming these factors by CFA through Analysis of Moment Structures (AMOS 18) software. Fifteen variables are identified through literature, and four factors extracted, which affects the flexibility of FMS in Production Flexibility, Machine Flexibility, Product Flexibility, and Volume Flexibility. SEM using AMOS 18.0 was used to perform the first-order four-factor structure (Production Flexibility, Machine Flexibility, Product Flexibility and Volume Flexibility) of the FMS flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baffo, I., Confessore, G., & Stecca, G. (2012). A decentralized model for flow shop production with flexible transportation system. Journal of Manufacturing Systems, 32(1), 68–77.

    Google Scholar 

  • Bayazit, O. (2005). Use of AHP in decision-making for flexible manufacturing systems. Journal of Manufacturing Technology Management, 16(7), 808–819.

    Article  Google Scholar 

  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.

    Article  Google Scholar 

  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606.

    Article  Google Scholar 

  • Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: John Wiley.

    Google Scholar 

  • Byrne, B. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Carmen Ruiz, M., Cazorla, D., Cuartero, F., & Macia, H. (2009). Improving performance in flexible manufacturing systems. Journal of Logic and Algebraic Programming, 78(4), 260–273.

    Article  Google Scholar 

  • Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276.

    Article  Google Scholar 

  • Chou, C. P., & Bentler, P. M. (2002). Model modification in structural equation modeling by imposing constraints. Computational Statistics & Data Analysis, 41(2), 271–287.

    Article  Google Scholar 

  • Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment Research & Evaluation, 10(7), 1–9.

    Google Scholar 

  • Dai, J. B., & Lee, N. K. (2012). Economic feasibility analysis of flexible material handling systems: A case study in the apparel industry. International Journal of Production Economics, 136(1), 28–36.

    Article  Google Scholar 

  • Diamantopoulos, A., & Siguaw, J. A. (2000). Introducing LISREL: A guide for the uninitiated. London: Sage Publications Limited.

    Google Scholar 

  • Dupuis Lozeron, E., & Victoria-Feser, M. P. (2010). Robust estimation of constrained covariance matrices for confirmatory factor analysis. Computational Statistics & Data Analysis, 54(12), 3020–3032.

    Article  Google Scholar 

  • Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 56–83.

    Article  Google Scholar 

  • Groover, M. P. (2006). Automation, production system and computer integrated manufacturing (2nd ed.). New Delhi: Prentice-Hall.

    Google Scholar 

  • Gultekin, H. (2012). Scheduling in flowshops with flexible operations: Throughput optimization and benefits of flexibility. International Journal of Production Economics, 140(2), 900–911.

    Article  Google Scholar 

  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. The Electronic Journal of Business Research Methods, 6(1), 53–60.

    Google Scholar 

  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

    Article  Google Scholar 

  • Jahromi, M. H. M. A., & Tavakkoli-Moghaddam, R. (2012). A novel 0-1 linear integer programming model for dynamic machine-tool selection and operation allocation in a flexible manufacturing system. Journal of Manufacturing Systems, 31(2), 224–231.

    Article  Google Scholar 

  • Jain, V., Raj, T. (2013a). Ranking of flexibility in Flexible Manufacturing System by using a Combined Multiple Attribute Decision Making Method. Global Journal of Flexible Systems Management, pp. 1–17.DOI: 10.1007/s40171-013-0038-5.

  • Jain, V., & Raj, T. (2013b). Evaluation of flexibility in FMS using SAW and WPM. Decision Science Letters, 2(4), 223–230.

    Article  Google Scholar 

  • Kaighobadi, M., & Venkatesh, K. (1994). Flexible manufacturing system: An overview. International Journal of Operations & Production Management, 14(4), 26–49.

    Article  Google Scholar 

  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36.

    Article  Google Scholar 

  • Katsikatsou, M., Moustaki, I., Yang-Wallentin, F., & Jöreskog, K. G. (2012). Pairwise likelihood estimation for factor analysis models with ordinal data. Computational Statistics & Data Analysis, 56, 4243–4258.

    Article  Google Scholar 

  • Keeling, K. B., & Pavur, R. J. (2007). A comparative study of the reliability of nine statistical software packages. Computational Statistics & Data Analysis, 51(8), 3811–3831.

    Article  Google Scholar 

  • Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York: The Guilford Press.

    Google Scholar 

  • Kumar, A., Tiwari, M. K., Shankar, R., & Baveja, A. (2006). Solving machine-loading problem of a flexible manufacturing system with constraint-based genetic algorithm. European Journal of Operational Research, 175(2), 1043–1069.

    Article  Google Scholar 

  • MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149.

    Article  Google Scholar 

  • Malhotra, M. K., & Grover, V. (1998). An assessment of survey research in POM: From constructs to theory. Journal of Operations Management, 16(4), 407–425.

    Article  Google Scholar 

  • McDonald, R. P., & Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64–82.

    Article  Google Scholar 

  • Miles, J., & Shevlin, M. (2007). A time and a place for incremental fit indices. Personality and Individual Differences, 42(5), 869–874.

    Article  Google Scholar 

  • Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430.

    Article  Google Scholar 

  • Nayak, N. C., & Ray, P. K. (2011). Flexibility adoption in indian manufacturing firms: A current perspective. International Journal of Process Systems Engineering, 1(3), 266–287.

    Article  Google Scholar 

  • Nunnally, J. C. (1978). Psychometric theory (Vol. 2). New York: McGraw–Hill.

    Google Scholar 

  • Prasad, D. K. G., Subbaiah, V. K., Rao, N. K., & Sastry, C. V. R. S. (2010). Prioritization of customer needs in house of quality using conjoint analysis. International Journal for Quality Research, 4(2), 145–154.

    Google Scholar 

  • Primrose, P. L. (1996). Do companies need to measure their production flexibility. International Journal of Operations and Production Management, 16(6), 4–11.

    Article  Google Scholar 

  • Raj, T., Attri, R., & Jain, V. (2012). Modelling the factors affecting flexibility in FMS. International Journal of Industrial and Systems Engineering, 11(4), 350–374.

    Article  Google Scholar 

  • Raj, T., Shankar, R., & Suhaib, M. (2008). An ism approach for modelling the enablers of flexible manufacturing system: The case for India. International Journal of Production Research, 46(24), 6883–6912.

    Article  Google Scholar 

  • Rao, K. V. S., & Deshmukh, S. G. (1994). Strategic framework for implementing flexible manufacturing systems in India. International Journal of Operations and Production Management, 14(4), 50–63.

    Article  Google Scholar 

  • Sanchez, A. M. (1994). FMS in Spanish industry: Lessons from experience. Integrated Manufacturing System, 5(2), 28–36.

    Article  Google Scholar 

  • Schumacker, R. E., & Lomax, R. G. (1996). A beginner’s guide to structural equation modeling. New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Shirinzadeh, B. (2002). Flexible fixturing for work-piece positioning and constraining. Assembly Automation, 22(2), 112–120.

    Article  Google Scholar 

  • Spano, M. R., O’Grady, P. J., & Young, R. E. (1993). The design of flexible manufacturing systems. Computers in Industry, 21, 185–198.

    Article  Google Scholar 

  • Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25(2), 173–180.

    Article  Google Scholar 

  • Stevens, J. (1996). Applied multivariate statistics for the social sciences (3rd ed.). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Suhr, D. D. (2006). Exploratory or confirmatory factor analysis. Cary: SAS Institute.

    Google Scholar 

  • Sujono, S., & Lashkari, R. S. (2007). A multi-objective model of operation allocation and material handling system selection in FMS design. International Journal of Production Economics, 105(1), 116–133.

    Article  Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). New York: Allyn and Bacon.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the anonymous referee of this paper for his or her valuable suggestions, which have helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, V., Raj, T. Evaluating the Variables Affecting Flexibility in FMS by Exploratory and Confirmatory Factor Analysis. Glob J Flex Syst Manag 14, 181–193 (2013). https://doi.org/10.1007/s40171-013-0042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40171-013-0042-9

Keywords

Navigation