Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Emotion classification using flexible analytic wavelet transform for electroencephalogram signals

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Emotion based brain computer system finds applications for impaired people to communicate with surroundings. In this paper, electroencephalogram (EEG) database of four emotions (happy, fear, sad, and relax) is recorded and flexible analytic wavelet transform (FAWT) is proposed for the emotion classification. FAWT analyzes the EEG signal into sub-bands and statistical measures are computed from the sub-bands for extraction of emotion specific information. The emotion classification performance of sub-band wise extracted features is examined over the variants of k-nearest-neighbor (KNN) classifier. The weighted-KNN provides the best emotion classification performance 86.1% as compared to other KNN variants. The proposed method shows better emotion classification performance as compared to other existing four emotions classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aftanas LI, Lotova NV, Koshkarov VI, Pokrovskaja VL, Popov SA, Makhnev VP. Non-linear analysis of emotion EEG: calculation of Kolmogorov entropy and the principal Lyapunov exponent. Neurosci Lett. 1997;226(1):13–6.

    Article  Google Scholar 

  2. Boostani R, Moradi MH. A new approach in the BCI research based on fractal dimension as feature and Adaboost as classifier. J Neural Eng. 2004;1(4):212.

    Article  Google Scholar 

  3. Frantzidis CA, Bratsas C, Papadelis CL, Konstantinidis E, Pappas C, Bamidis PD. Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE Trans Informn Technol Biomed. 2010;14(3):589–97.

    Article  Google Scholar 

  4. Petrantonakis PC, Hadjileontiadis LJ. Emotion recognition from EEG using higher order crossings. IEEE Trans Inform Technol Biomed. 2010;14(2):186–97.

    Article  Google Scholar 

  5. Wang XW, Nie D, Lu BL. EEG-based emotion recognition using frequency domain features and support vector machines. In: International Conference on Neural Information Processing. Berlin: Springer; 2011. pp. 734–43.

    Chapter  Google Scholar 

  6. Chanel G, Kierkels JJ, Soleymani M, Pun T. Short-term emotion assessment in a recall paradigm. Int J Hum-Comput Stud. 2009;67(8):607–27.

    Article  Google Scholar 

  7. Lin YP, Wang CH, Jung TP, Wu TL, Jeng SK, Duann JR, Chen JH. EEG-based emotion recognition in music listening. IEEE Trans Biomed Eng. 2010;57(7):1798–806.

    Article  Google Scholar 

  8. Hadjidimitriou SK, Hadjileontiadis LJ. Toward an EEG-based recognition of music liking using time-frequency analysis. IEEE Trans Biomed Eng. 2012;59(12):3498–510.

    Article  Google Scholar 

  9. Murugappan M, Nagarajan R, Yaacob S. Combining spatial filtering and wavelet transform for classifying human emotions using EEG signals. J Med Biol Eng. 2011;31(1):45–51.

    Article  Google Scholar 

  10. Bajaj V, Pachori RB. Detection of human emotions using features based on the multiwavelet transform of EEG signals. In: Brain-Computer Interfaces. Cham: Springer; 2015. pp. 215–40.

    Google Scholar 

  11. Bajaj V, Pachori RB. Human emotion classification from EEG signals using multiwavelet transform. In: Medical Biometrics, 2014 International Conference on, IEEE; 2014. pp. 125–30.

  12. Murugappan M. Human emotion classification using wavelet transform and KNN. In: Pattern Analysis and Intelligent Robotics (ICPAIR), 2011 International Conference on, 1, IEEE; 2011. pp. 148–53.

  13. Petrantonakis PC, Hadjileontiadis LJ. Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis. IEEE Trans Affect Comput. 2010;1(2):81–97.

    Article  Google Scholar 

  14. Liu Y, Sourina O, Nguyen MK. Real-time EEG-based human emotion recognition and visualization. In: Cyberworlds (CW), 2010 International Conference on, IEEE; 2010. pp. 262–9.

  15. Ang AQX, Yeong YQ, Ser W. Emotion classification from EEG signals using time-frequency-DWT features and ANN. J Comput Commun. 2017;5(03):75.

    Article  Google Scholar 

  16. Singh M, Singh M, Goyal M. Emotion classification using EEG entropy. Int J Inform Technol Knowl Manag. 2015;8(2):150–8.

    Google Scholar 

  17. Mikhail M, El-Ayat K, Coan JA, Allen JJ. Using minimal number of electrodes for emotion detection using brain signals produced from a new elicitation technique. Int J Auton Adapt Commun Syst. 2013;6(1):80–97.

    Article  Google Scholar 

  18. Khosrowabadi R, Quek HC, Wahab A, Ang KK. EEG-based emotion recognition using self-organizing map for boundary detection. In: Pattern Recognition (ICPR), 2010 20th International Conference on, IEEE; 2010. pp. 4242–45.

  19. Bhatti AM, Majid M, Anwar SM, Khan B. Human emotion recognition and analysis in response to audio music using brain signals. Comput Hum Behav. 2016;65:267–75.

    Article  Google Scholar 

  20. Mehmood RM, Lee HJ. A novel feature extraction method based on late positive potential for emotion recognition in human brain signal patterns. Comput Electr Eng. 2016;53:444–57.

    Article  Google Scholar 

  21. Fan M, Chou CA. Recognizing affective state patterns using regularized learning with nonlinear dynamical features of EEG. In: Biomedical and Health Informatics (BHI), 2018 IEEE EMBS International Conference on, IEEE; 2018. pp. 137–40.

  22. Katsigiannis S, Ramzan N. Dreamer: a database for emotion recognition through eeg and ecg signals from wireless low-cost off-the-shelf devices. IEEE J Biomed Health Inform. 2018;22(1):98–107.

    Article  Google Scholar 

  23. Hu B, Li X, Sun S, Ratcliffe M. Attention recognition in EEG-based affective learning research using CFS+ KNN algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics; 2016.

  24. Balasubramanian G, Kanagasabai A, Mohan J, Seshadri NG. Music induced emotion using wavelet packet decompositionAn EEG study. Biomed Signal Process Control. 2018;42:115–28.

    Article  Google Scholar 

  25. Nakisa B, Rastgoo MN, Tjondronegoro D, Chandran V. Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst Appl. 2018;93:143–55.

    Article  Google Scholar 

  26. Chakladar DD, Chakraborty S. EEG based emotion classification using correlation based subset selection. Biol Inspir Cognit Archit. 2018;24:98–106.

    Google Scholar 

  27. Gabert-Quillen CA, Bartolini EE, Abravanel BT, Sanislow CA. Ratings for emotion film clips. Behav Res Methods. 2015;47(3):773–87.

    Article  Google Scholar 

  28. Koelstra S, Muhl C, Soleymani M, Lee JS, Yazdani A, Ebrahimi T, Patras I. Deap: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput. 2012;3(1):18–31.

    Article  Google Scholar 

  29. Bradley MM, Lang PJ. Measuring emotion: the self-assessment manikin and the semantic differential. J Behav Therapy Exp Psychiatr. 1994;25(1):49–59.

    Article  Google Scholar 

  30. Murugappan M, Juhari MRBM, Nagarajan R, Yaacob S. An investigation on visual and audiovisual stimulus based emotion recognition using EEG. J. Med Eng Inform. 2009;1(3):342–56.

    Article  Google Scholar 

  31. Rosen HJ, Pace-Savitsky K, Perry RJ, Kramer JH, Miller BL, Levenson RW. Recognition of emotion in the frontal and temporal variants of frontotemporal dementia. Dement Geriatr Cognit Disord. 2004;17(4):277–81.

    Article  Google Scholar 

  32. Bayram I. An analytic wavelet transform with a flexible time-frequency covering. IEEE Trans Signal Process. 2013;61(5):1131–42.

    Article  MathSciNet  Google Scholar 

  33. Zhang C, Li B, Chen B, Cao H, Zi Y, He Z. Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform. Mech Syst Signal Process. 2015;64:162–87.

    Article  Google Scholar 

  34. Acharya UR, Sudarshan VK, Koh JE, Martis RJ, Tan JH, Oh SL, Chua CK. Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals. Biomed Signal Process Control. 2017;31:31–43.

    Article  Google Scholar 

  35. Taran S, Bajaj V, Siuly S. An optimum allocation sampling based feature extraction scheme for distinguishing seizure and seizure-free EEG signals. Health Inform Sci Syst. 2017;5(1):1–7.

    Article  Google Scholar 

  36. Taran S, Bajaj V. Rhythm based identification of alcohol EEG signals. IET Sci Meas Technol. 2018;12(3):343–9.

    Article  Google Scholar 

  37. Taran S, Bajaj V. Motor imagery tasks-based EEG signals classification using tunable-Q wavelet transform. Neural Comput Appl. (2018). https://doi.org/10.1007/s00521-018-3531-0

    Article  Google Scholar 

  38. Taran S, Bajaj V, Sharma D, Siuly S, Sengur A. Features based on analytic IMF for classifying motor imagery EEG signals in BCI applications. Measurement. 2018;116:68–76.

    Article  Google Scholar 

  39. Kim KS, Choi HH, Moon CS, Mun CW. Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr Appl Phys. 2011;11(3):740–5.

    Article  Google Scholar 

  40. Johnson JM, Yadav A. Fault detection and classification technique for HVDC transmission lines using KNN. In: Information and Communication Technology for Sustainable Development. Singapore: Springer; 2018. pp. 245–53.

    Google Scholar 

Download references

Acknowledgement

Support obtained from the PDPM Indian Institute of Information Technology Design and Manufacturing Jabalpur, project titled Brain computer interface for classification of human Emotion, Project No. PDPM IIITDMJ/Dir.Office/officeorder/2016/10-2902 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Bajaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, V., Taran, S. & Sengur, A. Emotion classification using flexible analytic wavelet transform for electroencephalogram signals. Health Inf Sci Syst 6, 12 (2018). https://doi.org/10.1007/s13755-018-0048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-018-0048-y

Keywords

Navigation