Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Low-power technologies for wearable telecare and telehealth systems: A review

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Wearable telecare and telehealth systems are those which can be worn on the human body and continuously monitor a user’s vital status. Even though these systems have already shown promise in applications for improving medical service quality and reducing medical costs, a short battery life significantly restricts the widespread use of these systems. Low-power technologies (a general name for technologies which use various approaches to reduce the power consumption of the associated electronics) can help alleviate this disadvantage of wearable telecare and telehealth systems. In this paper, we review recent developments and applications of low-power technologies in wearable telecare and telehealth systems, sorting the various approaches into two categories: hardware-based approaches and firmware-based approaches. This paper focuses on illustrating how to realize these approaches but does not provide a quantitative analysis of different approaches, since the intended applications of these approaches are quite different, hence numeric comparison is not meaningful. Given the proliferation of wearable telecare and telehealth systems, there will be a greater emphasis on the development of low-power technologies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow J, Singh D, Bayer S, Curry R. A systematic review of the benefits of home telecare for frail elderly people and those with long-term conditions. J Telemed Telecare. 2007; 13(4):172–9.

    Article  Google Scholar 

  2. Mistry H. Systematic review of studies of the cost-effectiveness of telemedicine and telecare. Changes in the economic evidence over twenty years. J Telemed Telecare. 2012; 18(1):1–6.

    Article  MathSciNet  Google Scholar 

  3. Nyman SR, Victor CR. Use of personal call alarms among community-dwelling older people. Ageing Soc. 2014; 34(1):67–89.

    Article  Google Scholar 

  4. Anliker U, Ward JA, Lukowicz P, TrÖster G, Dolveck F, Baer M, Keita F, Schenker EB, Catarsi F, Coluccini L, Belardinelli A, Shklarski D, Alon M, Hirt E, Schmid R, Vuskovic M. AMON: A wearable multiparameter medical monitoring and alert system. IEEE T Inf Technol Biomed. 2004; 8(4):415–27.

    Article  Google Scholar 

  5. Schwickert L, Becker C, Lindemann U, Maréchal C, Bourke A, Chiari L, Helbostad JL, Zijlstra W, Aminian K, Todd C, Bandinelli S, Klenk J, Consortium F, the FMDCG. Fall detection with body-worn sensors: a systematic review. Z Gerontol Geriatr.2013; 46(8):706–19.

    Article  Google Scholar 

  6. Wang C, Wang Q, Shi S. A distributed wireless body area network for medical supervision. Conf Proc IEEE Int Instrum Meas Technol Conf. 2012; 1:2612–6.

    Google Scholar 

  7. Shnayder V, Chen B-R, Lorincz K, Jones TRF, Welsh M. Sensor networks for medical care. http://www. eecs.harvard.edu/˜mdw/proj/codeblue. 2005. Accessed 31-Aug-2005.

    Book  Google Scholar 

  8. Klasnja P, Pratt W. Healthcare in the pocket: mapping the space of mobile-phone health interventions. J Biomed Inform. 2012; 45(1):184–98.

    Article  Google Scholar 

  9. Del Rosario MB, Wang K, Wang J, Liu Y, Brodie M, Delbaere K, LKovell NH, Lord SR, Redmond SJ. A comparison of activity classification in younger and older cohorts using a smartphone. Physiol Meas. 2014; 35(11):2269–86.

    Article  Google Scholar 

  10. May CR, Finch TL, Cornford J, Exley C, Gately C, Kirk S, Jenkings K, Osbourne J, Robinson AL, Rogers A, Wilson R, Mair FS. Integrating telecare for chronic disease management in the community: what needs to be done? BMC Health Serv Res. 2011; doi: 10.1186/1472-6963-11-131.

    Google Scholar 

  11. Tamura T, Yoshimura T, Sekine M, Uchida M, Tanaka O. A wearable airbag to prevent fall injuries. IEEE T Inf Technol Biomed. 2009; 13(6):910–4.

    Article  Google Scholar 

  12. Chan M, Estève D, Fourniols JY, Escriba C, Campo E. Smart wearable systems: current status and future challenges. Artif Intell Med. 2012; 56(3):137–56.

    Article  Google Scholar 

  13. Igual R, Medrano C, Plaza I. Challenges, issues and trends in fall detection systems. Biomed Eng Online. 2013; doi: 10.1186/1475-925X-12-66.

    Google Scholar 

  14. Pantelopoulos A, Bourbakis NG. A survey on wearable sensorbased systems for health monitoring and prognosis. IEEE T Syst Man Cy C. 2010; 40(1):1–12.

    Article  Google Scholar 

  15. Burns A, Greene BR, McGrath MJ, O’Shea TJ, Kuris B, Ayer SM, Stroiescu F, Cionca V. SHIMMER (TM) - A wireless sensor platform for noninvasive biomedical research. IEEE Sens J. 2010; 10(9):1527–34.

    Article  Google Scholar 

  16. Bloom L, Eardley R, Geelhoed E, Manahan M, Ranganathan P. Investigating the relationship between battery life and user acceptance of dynamic, energy-aware interfaces on handhelds. In: Brewster S, Dunlop M, editors. Mobile Human-Computer Interaction - MobileHCI 2004. Berlin Heidelberg: Sprigner; 2004. pp. 13–24.

    Chapter  Google Scholar 

  17. Alshurafa N, Eastwood JA, Nyamathi S, Liu JJ, Xu W, Ghasemzadeh H, Pourhomayoun M, Sarrafzadeh M. Improving compliance in a remote health monitoring system through smartphone battery optimization. IEEE J Biomed Health Inform. 2015; 19(1):57–63.

    Article  Google Scholar 

  18. Bergmann JHM, McGregor AH. Body-worn sensor design: what do patients and clinicians want? Ann Biomed Eng. 2011; 39(9):2299–312.

    Article  Google Scholar 

  19. Bodine K, Gemperle F. Effects of functionality on perceived comfort of wearables. Conf Proc Int Symp Wearable Comput. 2003; 1:57–60.

    Article  Google Scholar 

  20. Hartholt KA, van Beeck EF, Polinder S, van der Velde N, van Lieshout EM, Panneman MJ, van der Cammen TJ, Patka P. Societal consequences of falls in the older population: injuries, healthcare costs, and long-term reduced quality of life. J Trauma. 2011; 71(3):748–53.

    Article  Google Scholar 

  21. Yip M. Ultra-low-power circuits and systems for wearable and implantable medical devices. http://hdl.handle.net/1721.1/84902. 2013. Accessed 31-Dec-2013.

    Google Scholar 

  22. Paradiso JA, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervas Comput. 2005; 4(1):18–27.

    Article  Google Scholar 

  23. Piguet C. Low-power electronics design. CRC press; 2004

    Google Scholar 

  24. Horowitz M, Indermaur T, Gonzalez R. Low-power digital design. Conf Proc IEEE Symp Low Power Electron. 1994; 1:8–11.

    Google Scholar 

  25. Pillai P, Shin KG. Real-time dynamic voltage scaling for lowpower embedded operating systems. Conf Proc ACM Symp Oper Syst Princ. 2001; 35(5):89–102.

    Article  Google Scholar 

  26. Albers S. Energy-efficient algorithms. Commun ACM. 2010; 53(5):86–96.

    Article  Google Scholar 

  27. Benini L, Bogliolo A, De Micheli G. A survey of design techniques for system-level dynamic power management. IEEE T Vlsi Syst. 2000; 8(3):299–316.

    Article  Google Scholar 

  28. Benini L, De Micheli G. System-level power optimization: techniques and tools. ACM T Des Autom Electron Syst. 2000; 5(2):115–92.

    Article  Google Scholar 

  29. Alioto M. Ultra-low power VLSI circuit design demystified and explained: A tutorial. IEEE T Circuits-I. 2012; 59(1):3–29.

    Article  MathSciNet  Google Scholar 

  30. Zhuravlev S, Saez JC, Blagodurov S, Fedorova A, Prieto M. Survey of energy-cognizant scheduling techniques. IEEE T Parall Distr. 2013; 24(7):1447–64.

    Article  Google Scholar 

  31. Sarpeshkar R. Universal principles for ultra low power and energy efficient design. IEEE T Circuits-II. 2012; 59(4):193–8.

    Google Scholar 

  32. Khateb F, Dabbous SBA, Vlassis S. A survey of nonconventional techniques for low-voltage low-power analog circuit design. Radioengineering. 2013; 22(2):415–27.

    Google Scholar 

  33. Ravanshad N, Rezaee-Dehsorkh H, Lotfi R, Lian Y. A levelcrossing based QRS-detection algorithm for wearable ECG sensors. IEEE J Biomed Health Inform. 2014; 18(1):183–92.

    Article  Google Scholar 

  34. Braojos R, Mamaghanian H, Junior AD, Ansaloni G, Atienza D, RincÓn FJ, Murali S. Ultra-low power design of wearable cardiac monitoring systems. Conf Proc Annu Des Autom Conf. 2014; 1:1–6.

    Google Scholar 

  35. French B, Siewiorek DP, Smailagic A, Deisher M. Selective sampling strategies to conserve power in context aware devices. Conf Proc IEEE Int Symp Wearable Comput. 2007; 1:77–80.

    Google Scholar 

  36. Shih E, Guttag J. Reducing energy consumption of multichannel mobile medical monitoring algorithms. Conf Proc Int Workshop Syst Netw Support Health Care Assist Living Environ. 2008; doi: 10.1145/1515747.1515767.

    Google Scholar 

  37. Ebrazeh A, Mohseni P. A 14pJ/pulse-TX, 0.18nJ/b-RX, 100Mbps, channelized, IR-UWB transceiver for centimeter-to-meter range biotelemetry. Conf Proc Cust Integr Circuits Conf. 2014; 1:1–4.

    Google Scholar 

  38. Deepu CJ, Zhang X, Liew W-S, Wong DLT, Lian Y. An ECGon- Chip With 535 nW/Channel Integrated Lossless Data Compressor for Wireless Sensors. IEEE J Solid-St Circ. 2014; 49(11):2435–48.

    Article  Google Scholar 

  39. Rofouei M, Farella E, Brunelli D, Sarrafzadeh M, Benini L. Battery-aware power management techniques for wearable haptic nodes. Conf Proc Int Conf Body Area Netw. 2010; doi: 10.1145/2221924.2221967.

    Google Scholar 

  40. Porcarelli D, Donati I, Nehani J, Brunelli D, Magno M, Benini L. Design and implementation of a multi sensors self sustainable wearable device. Conf Proc Eur Embed Des Educ Res Conf. 2014; 1:16–20.

    Google Scholar 

  41. Stäger M, Lukowicz P, TrÖster G. Power and accuracy tradeoffs in sound-based context recognition systems. Perv Mob Comput. 2007; 3(3):300–27.

    Article  Google Scholar 

  42. Zappi P, Roggen D, Farella E, TrÖster G, Benini L. Network-level power-performance trade-off in wearable activity recognition: a dynamic sensor selection approach. ACM T Embed Comput Syst. 2012; 11(3):1–30.

    Article  Google Scholar 

  43. Zappi P, Lombriser C, Stiefmeier T, Farella E, Roggen D, Benini L, TrÖster G. Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selection. In: Verdone R, editors. Wireless Sensor Networks. Bologna: Berlin Heidelberg: Springer; 2008. pp. 17–33.

    Chapter  Google Scholar 

  44. Kitayoshi H, Sawaya K, Kuwano H. Ultra low power wireless ECG sensor tag with wearable antenna. Conf Proc IEEE Sens. 2013; 1:1–4.

    Google Scholar 

  45. Zhou C-C, Tu C-L, Gao Y, Wang F-X, Gong H-W, Lian P, He C, Ye X-S. A low-power, wireless, wrist-worn device for long time heart rate monitoring and fall detection. Conf Proc IEEE Int Conf Orange Technol. 2014; 1:33–6.

    Google Scholar 

  46. Yang K, Jiang H, Yang W, Mes F, Zhang C, Wang Z, Lin Q, Jia W. Lifetime tracing of cardiopulmonary sounds with lowpower sound sensor stick connected to wireless mobile network. Analog Integr Circ S. 2014; 81(3):623–34.

    Article  Google Scholar 

  47. Analog Devices, ADXL 345 datasheet, http://www.analog.com/en/products/mems/mems-accelerometers/adxl345.html

  48. Waber T, Pahl W, Schmidt M, Feiertag G, Stufler S, Dudek R, Leidl A. Flip-chip packaging of piezoresistive barometric pressure sensors. Conf Proc SPIE Conf Smart Sens Actuators MEMS VI. 2013; doi: doi:10.1117/12.2016459.

    Google Scholar 

  49. Kerckhof S, Standaert F-X, Peeters E. From new technologies to new solutions. In: Francillon A, Rohatgi P, editors. Smart card research and advanced applications. International Publishing: Springer; 2014. pp. 16–29.

    Google Scholar 

  50. Zoss AB, Kazerooni H, Chu A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE-ASMET Mech. 2006; 11(2):128–38.

    Article  Google Scholar 

  51. Texas Instruments. CC1101 Low-power sub-1GHz RF transceiver. http://focus.ti.com/docs/prod/folders/print/cc1101. html. 2010. Accessed 2-Feb-2010.

    Google Scholar 

  52. Chen N, Kim S, van den Dungen W, Baggen CPMJ, Doornbos RMP. Fall detection system. WO Patent n. 2009138941. 2009.

    Google Scholar 

  53. Kim J-C, Kim K-S, Kim S. Wearable sensor system including optical 3-axis GRF sensor for joint torque estimation in realtime gait analysis. Conf Proc IEEE/ASME Int Conf Adv Intell Mechatron. 2014; 1:112–7.

    Google Scholar 

  54. Wang J, Redmond SJ, Voleno M, Narayanan MR, Wang N, Cerutti S, Lovell NH. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure. Physiol Meas. 2012; 33(11):1811–30.

    Article  Google Scholar 

  55. Ning J. Fall detection application by using 3-axis accelerometer ADXL345. http://blog.ednchina.geo.eet-cn.com/uploadedn/ Blog/2009/7/1/32909b38-5e12-4a32-bd7e-19e75256ed35.pdf. 2009. Accessed 31-Dec-2009.

    Google Scholar 

  56. Broeders J-H. Wearable electronic devices monitor vital signs, activity level, and more. http://www.analog.com/library/analogdialogue/archives/48-12/wearable_electronics.html. Accessed 14-Mar-2015.

  57. Roh T, Hong S, Yoo H-J. Wearable depression monitoring system with heart-rate variability. Conf Proc IEEE Eng Med Biol Soc. 2014; 1:562–5.

    Google Scholar 

  58. Shoaib M, Jha N, Verma N. A low-energy computation platform for data-driven biomedical monitoring algorithms. Conf Proc ACM/EDAC/IEEE Des Autom Conf. 2011; 1:591–6.

    Google Scholar 

  59. Park C, Chou PH, Bai Y, Matthews R, Hibbs A. An ultrawearable, wireless, low power ECG monitoring system. Conf Proc IEEE Biomed Circuits Syst Conf. 2006; 1:241–4.

    Google Scholar 

  60. Nemati E, Deen MJ, Mondal T. A wireless wearable ECG sensor for long-term applications. IEEE Commun Mag. 2012; 50(1):36–43.

    Article  Google Scholar 

  61. Ren L, Zhang Q, Shi W. Low-power fall detection in homebased environments. Conf Proc ACM Int Workshop Perv Wirel Healthc. 2012; 1:39–44.

    Google Scholar 

  62. Led S, Fernández J, Serrano L. Design of a wearable device for ECG continuous monitoring using wireless technology. Conf Proc IEEE Eng Med Biol Soc. 2004; 1:3318–21.

    Google Scholar 

  63. Weiss A, Herman T, Giladi N, Hausdorff JM. Objective assessment of fall risk in Parkinson’s disease using a body-fixed sensor worn for 3 days. PLoS One. 2014; doi: 10.1371/journal.pone.0096675.

    Google Scholar 

  64. Liu J, Priyantha B, Hart T, Ramos HS, Loureiro AAF, Wang Q. Energy efficient GPS sensing with cloud offloading. Conf Proc ACM Conf Embed Netw Sens Syst. 2012; 1:85–98.

    Google Scholar 

  65. Lanata A, Valenza G, Nardelli M, Gentili C, Scilingo EP. Complexity index from a personalized wearable monitoring system for assessing remission in mental health. IEEE J Biomed Health Inform. 2014; 19(1):132–9.

    Article  Google Scholar 

  66. Redmond SJ, Lovell NH, Yang GZ, Horsch A, Lukowicz P, Murrugarra L, Marschollek M. What does big data mean for wearable sensor systems? contribution of the IMIA wearablesensors in healthcare WG. Yearb Med Inform. 2014; 9(1):135–42.

    Article  Google Scholar 

  67. Lord SR, Sherrington C, Menz HB, Close JC. Falls in older people: risk factors and strategies for prevention. 2nd ed. Cambridge University Press;2007.

    Google Scholar 

  68. Wang C, Narayanan MR, Lord SR, Redmond SJ, Lovell NH. A low-power fall detection algorithm based on triaxial acceleration and barometric pressure. Conf Proc IEEE Eng Med Biol Soc. 2014; 1:570–3.

    Google Scholar 

  69. Hong JO, Yuen SGJ. Wearable heart rate monitor. US Patent n. 20140275852. 2014.

    Google Scholar 

  70. Yuan J, Tan KK, Lee TH, Koh GCH. Power-efficient interruptdriven algorithms for fall detection and classification of activities of daily living. IEEE Sens J. 2015; 15(3):1377–87.

    Article  Google Scholar 

  71. Mubashir M, Shao L, Seed L. A survey on fall detection: principles and approaches. Neurocomputing. 2013; 100:144–52.

    Article  Google Scholar 

  72. Ghasemzadeh H, Jafari R. Ultra low-power signal processing in wearable monitoring systems: a tiered screening architecture with optimal bit resolution. ACM T Embed Comput Syst. 2013; doi: 10.1145/2501626.2501636.

    Google Scholar 

  73. Stäger M, Lukowicz P, Perera N, von Büren T, TrÖster G, Starner T. Soundbutton: design of a low power wearable audio classification system. Conf Proc Int Symp Wearable Comput. 2003; 1:1–12.

    Google Scholar 

  74. Lorincz K, Chen B-R, Challen GW, Chowdhury AR, Patel S, Bonato P, Welsh M. Mercury: a wearable sensor network platform for high-fidelity motion analysis. Conf Proc ACM Conf Embed Netw Sens Syst. 2009; 1:183–96.

    Google Scholar 

  75. Panuccio P, Ghasemzadeh H, Fortino G, Jafari R. Power-aware action recognition with optimal sensor selection: an AdaBoost driven distributed template matching approach. Conf Proc ACM Workshop Mob Syst Appl Serv Healthc. 2011; doi: 10.1145/2064942.2064950.

    Google Scholar 

  76. Leuenberger K, Gassert R. Low-power sensor module for long-term activity monitoring. Conf Proc IEEE Eng Med Biol Soc. 2011; 1:2237–41.

    Google Scholar 

  77. Fraternali F, Rofouei M, Alshurafa N, Ghasemzadeh H, Benini L, Sarrafzadeh M. Opportunistic hierarchical classification for power optimization in wearable movement monitoring systems. Conf Proc IEEE Int Symp Ind Embed Syst. 2012; 1:102–11.

    Google Scholar 

  78. Ghasemzadeh H, Jafari R. An ultra low power granular decision making using cross correlation: minimizing signal segments for template matching. Conf Proc IEEE/ACM Int Conf Cyber-Physical Syst. 2011; 1:77–86.

    Google Scholar 

  79. Srinivasan V, Phan T. An accurate two-tier classifier for efficient duty-cycling of smartphone activity recognition systems. Conf Proc Int Workshop Sens Appl Mob Phones. 2012; doi: 10.1145/2389148.2389159.

    Google Scholar 

  80. Sueppel BE, Mortara DW. Low power pulse oximeter. US Patent n. 6697655. 2004.

    Google Scholar 

  81. Yan L, Zhong L, Jha NK. Energy comparison and optimization of wireless body-area network technologies. Conf Proc Int Conf Body Area Netw. 2007; 1:1–8.

    Google Scholar 

  82. Ganti RK, Jayachandran P, Abdelzaher TF, Stankovic JA. SATIRE: a software architecture for smart AtTIRE. Conf Proc Int Conf Mob Syst Appl Serv.2006; 1:110–23.

    Google Scholar 

  83. Benbasat AY, Paradiso JA. A framework for the automated generation of power-efficient classifiers for embedded sensor nodes. Conf Proc Int Conf Embed Netw Sens Syst. 2007; doi: 10.1145/1322263.1322285.

    Google Scholar 

  84. Bagalà F, Becker C, Cappello A, Chiari L, Aminian K, Hausdorff JM, Zijlstra W, Klenk J. Evaluation of accelerometerbased fall detection algorithms on real-world falls. PLoS One. 2012; doi: 10.1371/journal.pone.0037062.

    Google Scholar 

  85. Mirchevska V, Luštrek M, Gams M. Combining domain knowledge and machine learning for robust fall detection. Expert Syst. 2014; 31(2):163–75.

    Article  Google Scholar 

  86. Yuwono M, Moulton BD, Su SW, Celler BG, Nguyen HT. Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems. Biomed Eng Online. 2012; doi: 10.1186/1475-925X-11-9.

    Google Scholar 

  87. Rescio G, Leone A, Siciliano P. Supervised Expert system for wearable MEMS accelerometer-based fall detector. J Sens. 2013; doi: 10.1155/2013/254629.

    Google Scholar 

  88. Bharatula NB, Lukowicz P, TrÖster G. Functionality-powerpackaging considerations in context aware wearable systems. Pers Ubiquit Comput. 2008; 12(2):123–41.

    Article  Google Scholar 

  89. Casamassima F, Farella E, Benini L. Context aware power management for motion-sensing body area network nodes. Conf Proc Des Autom Test Eur Conf Exhib. 2014; doi: 10.7873/DATE.2014.183.

    Google Scholar 

  90. Shih EI, Shoeb AH, Guttag JV. Sensor selection for energyefficient ambulatory medical monitoring. Conf Proc Int Conf Mob Syst Appl Serv. 2009; 1:347–58.

    Google Scholar 

  91. Ghasemzadeh H, Amini N, Sarrafzadeh M. Energy-efficient signal processing in wearable embedded systems: an optimal feature selection approach. Conf Proc ACM/IEEE Int Symp Low Power Electron Des. 2012; 1:357–62.

    Google Scholar 

  92. Imtiaz SA, Rodriguez-Villegas E. A low computational cost algorithm for REM sleep detection using single channel EEG. Ann Biomed Eng. 2014; 42(11):2344–59.

    Article  Google Scholar 

  93. Lee KH, Kung S-Y, Verma N. Low-energy formulations of support vector machine kernel functions for biomedical sensor applications. J Signal Process Sys. 2012; 69(3):339–49.

    Article  Google Scholar 

  94. Trakimas M, Sonkusale SR. An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE T Circuits-I. 2011; 58(5):921–34.

    Article  MathSciNet  Google Scholar 

  95. Watkins A, Mudhireddy VN, Wang H, Tragoudas S. Adaptive compressive sensing for low power wireless sensors. Conf Proc Great Lakes Symp VLSI. 2014; doi: 10.1145/2591513.2591537.

    Google Scholar 

  96. Dixon AMR, Allstot EG, Gangopadhyay D, Allstot DJ. Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE T Circuits Syst. 2012; 6(2):156–66.

    Google Scholar 

  97. Imtiaz SA, Casson AJ, Rodriguez-Villegas E. Compression in wearable sensor nodes: impacts of node topology. IEEE T Biomed Eng. 2014; 61(4):1080–90.

    Article  Google Scholar 

  98. Ullah S, Khan P, Ullah N, Saleem S, Higgins H, Kwak KS. A review of wireless body area networks for medical applications. Int J Commun Netw Syst Sci. 2010; 2(8):797–803.

    Google Scholar 

  99. Benocci M, Tacconi C, Farella E, Benini L, Chiari L, Vanzago L. Accelerometer-based fall detection using optimized ZigBee data streaming. Microelectron J. 2010; 41(11):703–10.

    Article  Google Scholar 

  100. Natarajan A, Motani M, de Silva B, Yap K-K, Chua KC. Investigating network architectures for body sensor networks. Conf Proc ACM Int Workshop Syst Netw Support Healthc Assist Living Environ. 2007; doi: 10.1145/1248054.1248061.

    Google Scholar 

  101. Otal B, Alonso L, Verikoukis C. Highly reliable energy-saving MAC for wireless body sensor networks in healthcare systems. IEEE J Sel Area Comm. 2009; 27(4):553–65.

    Article  Google Scholar 

  102. Li H, Tan J. An ultra-low-power medium access control protocol for body sensor network. Conf Proc IEEE Eng Med Biol Soc. 2005; 1:2451–4.

    Google Scholar 

  103. Xiao S, Dhamdhere A, Sivaraman V, Burdett A. Transmission power control in body area sensor networks for healthcare monitoring. IEEE J Sel Area Comm. 2009; 27(1):37–48.

    Article  Google Scholar 

  104. Dhamdhere A, Sivaraman V, Burdett A. Experiments in adaptive power control for truly wearable biomedical sensor devices. Conf Proc Int Symp Parallel Distrib Process Appl. 2008; 1:919–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel H. Lovell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Lu, W., Narayanan, M.R. et al. Low-power technologies for wearable telecare and telehealth systems: A review. Biomed. Eng. Lett. 5, 1–9 (2015). https://doi.org/10.1007/s13534-015-0174-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-015-0174-2

Keywords

Navigation