Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Nonlinear Solar Thermal Radiation Efficiency and Energy Optimization for Magnetized Hybrid Prandtl–Eyring Nanoliquid in Aircraft

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A rising demand for industrial expansion, and optimization of energy and cost have stimulated researchers to consider effective usages of solar radiation and nanomaterials. As such, this study focuses on the flow rate, thermal distribution and entropy generation of the magnetized hybrid Prandtl–Eyring nanofluid flow along the interior parabolic solar trough collector of an aircraft wing. A nonlinear solar radiation and Joule heating of the aircraft wings, and the hybridization of cobalt ferrite \((\hbox {CoFe}_2\hbox {O}_4)\) and copper \((\hbox {Cu})\) nanoparticles are considered in an ethylene glycol (EG) base fluid. The transformed nonlinear coupled mathematical model for the hybrid Prandtl–Eyring nanofluid flow in a boundless medium with jump temperature and convective cooling boundary conditions is analytically solved. The flow dimensions and the engineering factors (shear stress and heat gradient) for various thermofluid parameter sensitivities are examined and comprehensively reported. As found, the \(\hbox {CoFe}_2\hbox {O}_4\)\(\hbox {Cu}/\hbox {EG}\) nanofluid has high thermal conductivity than the \(\hbox {Cu}\)–EG nanofluid. It is revealed that the energy optimization of the system is upsurged by encouraging \(\phi , \phi _{hnf}\) nanoparticle volume fraction. Hence, the study will benefit the thermal engineering for an advanced nanotechnology and solar aircraft efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Slimene, M.B.; Khlifi, M.A.: Modelling and study of energy storage devices for photovoltaic lighting. Energy Exploit. 38, 1932–1945 (2020)

    Article  Google Scholar 

  2. Cano, J.M.; Martin, A.D.; Herrera, R.S.; Vazquez, J.R.; Ruiz-Rodriguez, F.J.: Grid-connected PV systems controlled by sliding via wireless communication. Energies 14, 1931 (2021)

    Article  Google Scholar 

  3. Jamshed, W.; Mohd Nasir, N..A..A.; Mohamed Isa, S..S..P.; Safdar, R.; Shahzad, F.; Nisar, K..S..; Eid, M..R..; Abdel-Aty, A.; Yahia, I..S.: Thermal growth in solar water pump using Prandtl-Eyring hybrid nanofluid a solar energy application. Sci. Rep. 11, 18704 (2021)

    Article  Google Scholar 

  4. Cardwell, D.: Cross-Country solar plane expedition set for takeoff. The New York Times. Accessed 2 May 2013

  5. Batrawy, A.: Solar-powered plane takes off for flight around the world. Associated Press. Accessed 14 Mar 2015

  6. Qureshi, M.A.: Thermal capability and entropy optimization for Prandtl–Eyring hybrid nanofluid flow in solar aircraft implementation. Alex. Eng. J. (2021). https://doi.org/10.1016/j.aej.2021.10.051

    Article  Google Scholar 

  7. Minea, A.A.; El-Maghlany, W.M.: Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison, Renew. Energy 120, 350–364 (2018)

    Google Scholar 

  8. Mashhadian, A.; Heyhat, M.M.; Mahian, O.: Improving environmental performance of a direct absorption parabolic trough collector by using hybrid nanofluids. Energy Convers. Manage. 244, 114450 (2021)

    Article  Google Scholar 

  9. Ktistis, P.K.; Agathokleous, R.A.; Kalogirou, S.A.: Experimental performance of a parabolic trough collector system for an industrial process heat application. Energy 215, 119288 (2021)

    Article  Google Scholar 

  10. Mizan, Md..R..B..; Ferdows, M..; Shamshuddin, M.D..; Beg, O..A..; Salawu, S..O..; Kadir, A.: Computation of ferromagnetic/nonmagnetic nanofluid flow over a stretching cylinder with induction and curvature effects. Heat Transf. 50(6), 52405266 (2021)

    Google Scholar 

  11. Salawu, S.O.; Fatunmbi, E.O.; Okoya, S.S.: MHD heat and mass transport of Maxwell Arrhenius kinetic nanofluid flow over stretching surface with nonlinear variable properties. Results Chem. 3, 100125 (2021)

    Article  Google Scholar 

  12. Rahman, M.M.; Pop, I.; Saghir, M.Z.: Steady free convection flow within a titled nanofluid saturated porous cavity in the presence of a sloping magnetic field energized by an exothermic chemical reaction administered by Arrhenius kinetics. Int. J. Heat Mass Transf. 129, 198–211 (2019)

    Article  Google Scholar 

  13. Nadeem, S.; Akhtar, S.; Abbas, N.: Heat transfer of Maxwell base fluid flow of nanomaterial with MHD over a vertical moving surface. Alex. Eng. J. 59, 1847–1856 (2020)

    Article  Google Scholar 

  14. Azam, M.; Xu, T.; Shakoor, A.; Khan, M.: Effects of Arrhenius activation energy in development of covalent bonding in axisymmetric flow of radiative-cross nanofluid. Int. Commun. Heat Mass Transf. 113, 104547 (2020)

    Article  Google Scholar 

  15. Ogunseye, H.A.; Salawu, S.O.; Fatunmbi, E.O.: A numerical study of MHD heat and mass transfer of a reactive Casson–Williamson nanofluid past a vertical moving cylinder. Part. Differ. Equ. Appl. Math. 4, 100148 (2021)

    Google Scholar 

  16. Ferdows, M.; Shamshuddin, M.D.; Salawu, S.O.; Zaimi, K.: Numerical simulation for the steady nanofluid boundary layer flow over a moving plate with suction and heat generation. SN Appl. Sci. 3(2), 264 (2021)

    Article  Google Scholar 

  17. Ekiciler, R.; Çetinkaya, M.S.A.: A comparative heat transfer study between monotype and hybrid nanofluid in a duct with various shapes of ribs. Therm. Sci. Eng. Prog. 23, 100913 (2021)

    Article  Google Scholar 

  18. Ahmadi, M.H.; Mirlohi, A.; Nazari, M.A.; Ghasempour, R.A.: review of thermal conductivity of various nanofluids. J. Mol. Liq. 265, 181–188 (2018)

    Article  Google Scholar 

  19. Ekiciler, R.; Arslan, K.; Turgut, O.; Kurşun, B.: Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. J. Therm. Anal. Calorim. 143, 1637–1654 (2021)

    Article  Google Scholar 

  20. Bellos, E.; Tzivanidis, C.: Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids. Sustain. Energy Technol Assess 26, 105–115 (2018)

    Google Scholar 

  21. Abu-Hamdeh, N.H.; Aljinaidi, A.A.; Eltaher, M.A.; Almitani, K.H.; Alnefaie, K.A.; Abusorrah, A.M.; Safaei, M.R.: Implicit finite difference simulation of Prandtl–Eyring nanofluid over a flat plate with variable thermal conductivity: a Tiwari and Das model. Mathematics 9, 3153 (2021)

    Article  Google Scholar 

  22. Shankar, U.; Naduvinamani, N.: Magnetized squeezed flow of time-dependent Prandtl-Eyring fluid past a sensor surface. Heat Transf. Asian Res. 48, 2237–2261 (2019)

    Article  Google Scholar 

  23. Abdelmalek, Z.; Hussain, A.; Bilal, S.; Sherif, E.S.M.; Thounthong, P.: Brownian motion and thermophoretic diffusion influence on thermophysical aspects of electrically conducting viscoinelastic nanofluid flow over a stretched surface. J. Mater. Res. Techol. 9, 11948–11957 (2021)

    Article  Google Scholar 

  24. Akram, J.; Akbar, N.S.; Maraj, E.: Chemical reaction and heat source/sink effect on magnetonano Prandtl-Eyring fluid peristaltic propulsion in an inclined symmetric channel. Chin. J. Phys. 65, 300–313 (2020)

    Article  MathSciNet  Google Scholar 

  25. Jamshed, W.; Devi, S.U.; Nisar, K.S.: Single phase based study of Ag–Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor. Phys. Scr. 96(6), 065202 (2021)

    Article  Google Scholar 

  26. Salawu, S.O.; Oderinu, R.A.; Ohaegbue, A.D.: Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material. J. King Saud Univer.-Sci. 33(3), 101374 (2021)

    Article  Google Scholar 

  27. Li, Y.; et al.: An assessment of the mathematical model for estimating of entropy optimised viscous fluid flow towards a rotating cone surface. Sci. Rep. 11, 10259 (2021)

    Article  Google Scholar 

  28. Jamshed, W.; Mishra, S.; Pattnaik, P.; Nisar, K.S.; Devi, S.S.U.; Prakash, M.; Shahzad, F.; Hussain, M.; Vijayakumar, V.: Features of entropy optimization on viscous second grade nanofluid streamed with thermal radiation: a Tiwari and Das model. Case Stud. Therm. Eng. 27, 101291 (2021)

    Article  Google Scholar 

  29. Aziz, A..; Jamshed, W..; Aziz, T..; Bahaidarah, H..M..S..; Ur Rehman, K..: Entropy analysis of Powell-Eyring hybrid nanofluid including effect of linear thermal radiation and viscous dissipation. J. Therm. Anal. Calorim. 143(2), 1331–1343 (2021)

    Article  Google Scholar 

  30. Fatunmbi, E.O.; Adeosun, A.T.; Salawu, S.O.: Entropy analysis of nonlinear radiative Casson nanofluid transport over an electromagnetic actuator with temperature-dependent properties. Part. Differ. Equ. Appl. Math. 4, 100152 (2021)

    Google Scholar 

  31. Das, S.; Chakraborty, S.; Jana, R.N.; Makinde, O.D.: Entropy analysis of unsteady magneto-nanofluid flow past acclerating stretching sheet with convective boundary condition. Appl. Math. Mech. 36(12), 1593–1610 (2015)

    Article  MathSciNet  Google Scholar 

  32. Yusuf, T.A.; Akaje, T.W.; Salawu, S.O.; Gbadeyan, J.A.: Arrhenius activation energy effect on a stagnation point slippery MHD Casson nanofluid flow with entropy generation and melting heat transfer. Defect Diffus. Forum 408, 1–18 (2021)

    Article  Google Scholar 

  33. Hayat, T.; Ullah, I.; Muhammad, K.; Alsaedi, A.: Gyrotactic microorganism and bio-convection during flow of Prandtl–Eyring nanomaterial. Nonlinear Eng. 10, 201–212 (2021)

    Article  Google Scholar 

  34. Hussain, S.M.; Jamshed, W.: A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: implementing finite difference method. Int. Commun. Heat Mass Transf. 129, 105671 (2021)

    Article  Google Scholar 

  35. Mekheimer, K.S.; Ramadan, S.F.: New insight into gyrotactic microorganisms for bio-thermal convection of Prandtl nanofluid over a stretching/shrinking permeable sheet. SN Appl. Sci. 2, 450 (2020)

  36. Salawu, S.O.; Dada, M.S.: Lie group analysis of Soret and Dufour effects on radiative inclined magnetic pressure-driven flow past a Darcy–Forchheimer medium. Journal of the Serbian Society for computational Mechanics 12(1), 108–125 (2018)

    Article  Google Scholar 

  37. khan, M..; Rasheed, A..: Slip velocity and temperature jump effects ommolybdenum disulfide \(\text{ MoS}_2\) and silicon oxide \(\text{ SiO}_2\) hybrid nanofluid near irregular 3D surface. Alex. Eng. J. 60(1), 1689–1701 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Salawu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salawu, S.O., Obalalu, A.M. & Shamshuddin, M. Nonlinear Solar Thermal Radiation Efficiency and Energy Optimization for Magnetized Hybrid Prandtl–Eyring Nanoliquid in Aircraft. Arab J Sci Eng 48, 3061–3072 (2023). https://doi.org/10.1007/s13369-022-07080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07080-1

Keywords

Navigation