Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A Comparative Study on Classifying Human Activities Using Classical Machine and Deep Learning Methods

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Prediction of human physical activities has become a necessity for some applications that come with the development of wearable and portable hardware such as smartwatches and smartphones. The task of Human Activity Recognition (HAR) is to recognize human physical activities, e.g., walking, sitting, and running, using the data collected from sensors, e.g., accelerometers and gyroscope. HAR is commonly applied on smart systems, such as smartphones, to serve the understanding of a user’s behaviors and provide assistance to the user because of the rapid development of ubiquitous computing technology in recent years. Thus, predicting activities, such as standing, walking, sitting, during the day have become a popular topic in machine and deep learning. The aim of this study is to predict the user’s activities based on context information gathered by sensors such as gyroscopes and accelerometers. The conducted classification algorithms extract features from training data and learn a classification model based on the features to predict activity. In this paper, various classical machine and deep learning techniques have been studied and compared for human activity recognition. A comparative analysis is performed between techniques in order to select the classifier with the best recognition performance. Experimental results show that established Deep Neural Network (DNN) model achieved an accuracy of up to 96.81% and mean absolute error of up to 0.03 on publicly available UCI-HAR dataset. This method has given the best performance between conducted classification methods in this study to predict human activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, Y.; Cang, S.; Yu, H.: A survey on wearable sensor modality centred human activity recognition in health care. Expert Syst. Appl. 137, 167–190 (2019). https://doi.org/10.1016/j.eswa.2019.04.057.

    Article  Google Scholar 

  2. Yuan, G.; Wang, Z.; Meng, F.; Yan, Q.; Xia, S.: An overview of human activity recognition based on smartphone. Sens. Rev. 39(2), 288–306 (2019). https://doi.org/10.1108/SR-11-2017-0245.

    Article  Google Scholar 

  3. Jobanputra, C.; Bavishi, J.; Doshi, N.: Human activity recognition: a survey. Procedia Comput. Sci. 155, 698–703 (2019)

    Article  Google Scholar 

  4. Xu, J.; Yuan, K.: Wearable muscle movement information measuring device based on acceleration sensor. Measurement 167, 108274 (2020). https://doi.org/10.1016/j.measurement.2020.108274.

    Article  Google Scholar 

  5. Majumder, S.; Mondal, T.; Deen, M.J.: A simple, low-cost and efficient gait analyzer for wearable healthcare applications. IEEE Sens. J. 19(6), 2320–2329 (2018)

    Article  Google Scholar 

  6. Chen, Y.; Shen, C.: Performance analysis of smartphone-sensor behavior for human activity recognition. IEEE Access. 5, 3095–3110 (2017)

    Article  Google Scholar 

  7. Jain, A.; Kanhangad, V.: Human activity classification in smartphones using accelerometer and gyroscope sensors. IEEE Sens. J. 18(3), 1169–1177 (2017)

    Article  Google Scholar 

  8. Ramasamy Ramamurthy, S.; Roy, N.: Recent trends in machine learning for human activity recognition—a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(4), e1254 (2018). https://doi.org/10.1002/widm.1254.

    Article  Google Scholar 

  9. Gjoreski, H., Bizjak, J., Gjoreski, M., Gams, M.: Comparing deep and classical machine learning methods for human activity recognition using wrist accelerometer. In: Proceedings of the IJCAI 2016 Workshop on Deep Learning for Artificial Intelligence, vol. 10, New York, NY, USA (2016)

  10. Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; et al.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015). https://doi.org/10.3390/s151229858.

    Article  Google Scholar 

  11. Cheng, W.: Accurate and efficient human activity recognition. PhD Thesis, The University Of Melbourne (2018)

  12. Cao, L.; Wang, Y.; Zhang, B.; Jin, Q.; Vasilakos, A.V.: GCHAR: an efficient group-based context-aware human activity recognition on smartphone. J. Parallel Distrib. Comput. 118, 67–80 (2018)

    Article  Google Scholar 

  13. Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R.: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst. Appl. 105, 233–261 (2018). https://doi.org/10.1016/j.eswa.2018.03.056.

    Article  Google Scholar 

  14. Dang, L.M.; Min, K.; Wang, H.; Piran, M.J.; Lee, C.H.; et al.: Sensor-based and vision-based human activity recognition: a comprehensive survey. Pattern Recogn. 108, 107561 (2020). https://doi.org/10.1016/j.patcog.2020.107561.

    Article  Google Scholar 

  15. Fan, X., Zhang, H., Leung, C., Miao, C.: Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 168–173 (2016)

  16. Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J.: A survey of online activity recognition using mobile phones. Sensors 15(1), 2059–2085 (2015). https://doi.org/10.3390/s150102059.

    Article  Google Scholar 

  17. Hoseini-Tabatabaei, S.A.; Gluhak, A.; Tafazolli, R.: A survey on smartphone based systems for opportunistic user context recognition. ACM Comput. Surv. 27, 45 (2013)

    Google Scholar 

  18. Incel, O.D.; Kose, M.; Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013)

    Article  Google Scholar 

  19. Lara, O.D.; Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2012)

    Article  Google Scholar 

  20. Chen, L., Hoey, J., Nugent, C., Cook, D., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)

  21. Kharat, M.V.; Walse, K.H.; Dharaskar, R.V.: Survey on soft computing approaches for human activity recognition. Int. J. Sci. Res. 6(2), 1328–1334 (2015)

    Google Scholar 

  22. Dhiman, C.; Vishwakarma, D.K.: A review of state-of-the-art techniques for abnormal human activity recognition. Eng. Appl. Artif. Intell. 77, 21–45 (2019)

    Article  Google Scholar 

  23. Singh, T.; Vishwakarma, D.K.: Video benchmarks of human action datasets: a review. Artif. Intell. Rev. 52(2), 1107–1154 (2019)

    Article  Google Scholar 

  24. Singh, T., Vishwakarma, D.K.: Human activity recognition in video benchmarks: a survey. In: Advances in Signal Processing and Communication, Springer, Singapore, pp. 247–259 (2019)

  25. Reyes-Ortiz, J., Anguita, D., Ghio, A., Oneto, L., Parra, X.: UCI Machine Learning Repository: Human Activity Recognition Using Smartphones Data Set. https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones (2012). Accessed 10 Nov 2020.

  26. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: International Workshop on Ambient Assisted Living. Springer, Berlin, pp. 216–223 (2012). https://doi.org/10.1007/978-3-642-35395-6_30

  27. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Esann, vol. 3, p. 3 (2013)

  28. Ronao, C.A., Cho, S.B.: Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models. In: IEEE/2014 10th International Conference on Natural Computation (ICNC), Xiamen, China, pp. 681–686 (2014)

  29. Li, Y.; Shi, D.; Ding, B.; Liu, D.: Unsupervised feature learning for human activity recognition using smartphone sensors. In: Mining Intelligence and Knowledge Exploration, Springer, Cham, pp. 99–107 (2014)

  30. Kolosnjaji, B., Eckert, C.: Neural network-based user-independent physical activity recognition for mobile devices. In: Proceedings of the IDEAL: 16th International Conference, Springer, Cham, pp. 378–386 (2015)

  31. Wang, A.; Chen, G.; Yang, J.; Zhao, S.; Chang, C.Y.: A comparative study on human activity recognition using inertial sensors in a smartphone. IEEE Sens. J. 16(11), 4566–4578 (2016)

    Article  Google Scholar 

  32. Zaki, Z.; Shah, M.A.; Wakil, K.; Sher, F.: Logistic regression based human activities recognition. J. Mech. Continu. Math. Sci. 15(4), 228–246 (2020)

    Google Scholar 

  33. Jiang, W., Yin, Z.: Human activity recognition using wearable sensors by deep convolutional neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 1307–1310 (2015)

  34. Ronao, C.A.; Cho, S.B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016). https://doi.org/10.1016/j.eswa.2016.04.032.

    Article  Google Scholar 

  35. Almaslukh, B.; AlMuhtadi, J.; Artoli, A.: An effective deep autoencoder approach for online smartphone-based human activity recognition. IJCSNS Int. J. Comput. Sci. Netw. Secur. 17(4), 160–165 (2017)

    Google Scholar 

  36. Murad, A.; Pyun, J.Y.: Deep recurrent neural networks for human activity recognition. Sensors 17(11), 2556 (2017). https://doi.org/10.3390/s17112556.

    Article  Google Scholar 

  37. Bhattacharjee, S., Kishore, S., Swetapadma, A.: A comparative study of supervised learning techniques for human activity monitoring using smart sensors. In: IEEE/2018 Second International Conference on Advances in Electronics, Computers and Communications, Bangalore, India, pp 1–4 (2018)

  38. Ignatov, A.: Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl. Soft Comput. 62, 915–922 (2018)

    Article  Google Scholar 

  39. Zhao, Y.; Yang, R.; Chevalier, G.; Xu, X.; Zhang, Z.: Deep residual bidir-LSTM for human activity recognition using wearable sensors. Math. Probl. Eng. 2018, 13 (2018). https://doi.org/10.1155/2018/7316954.

    Article  Google Scholar 

  40. Metin, İ.A., Karasulu, B.: İnsan Aktivitelerinin Sınıflandırılmasında Tekrarlayan Sinir Ağı Kullanan Derin Öğrenme Tabanlı Yaklaşım. Veri Bilimi. 2(2), 1–10 (in Turkish with an abstract in English) (2015)

  41. Sikder, N., Chowdhury, M.S., Arif, A.S.M., Nahid, A.A.: Human activity recognition using multichannel convolutional neural network. In: IEEE/2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, pp. 560–565 (2019)

  42. Wan, S.; Qi, L.; Xu, X.; Tong, C.; Gu, Z.: Deep learning models for real-time human activity recognition with smartphones. Mobile Netw. Appl. 25(2), 743–755 (2020). https://doi.org/10.1007/s11036-019-01445-x.

    Article  Google Scholar 

  43. Wang, S., Zhu, X.: A hybrid deep neural networks for sensor-based human activity recognition. In: IEEE/2020 12th International Conference on Advanced Computational Intelligence (ICACI), Dali, China, pp. 486–491 (2020)

  44. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  45. Yağanoğlu, M., Bozkurt, F., Günay, F.B.: EEG tabanli beyin-bilgisayar arayüzü sistemlerinde öznitelik çikarma yöntemleri. Mühendislik Bilimleri ve Tasarım Dergisi 2(3), 313–318 (in Turkish with an abstract in English) (2014)

  46. Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  47. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)

    Article  Google Scholar 

  48. Liu, S.; Gao, R.X.; John, D.; Staudenmayer, J.W.; Freedson, P.S.: Multisensor data fusion for physical activity assessment. IEEE Trans. Biomed. Eng. 59(3), 687–696 (2011). https://doi.org/10.1109/TBME.2011.2178070.

    Article  Google Scholar 

  49. Fleury, A.; Vacher, M.; Noury, N.: Svm-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf Technol. Biomed. 14(2), 274–283 (2009). https://doi.org/10.1109/TITB.2009.2037317.

    Article  Google Scholar 

  50. Vishwakarma, D.K.; Dhiman, C.: A unified model for human activity recognition using spatial distribution of gradients and difference of Gaussian kernel. Visual Comput. 35(11), 1595–1613 (2019)

    Article  Google Scholar 

  51. Zhang, H., Berg, A. C., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 2126–2136 (2006)

  52. Vishwakarma, D.K.; Singh, K.: Human activity recognition based on spatial distribution of gradients at sublevels of average energy silhouette images. IEEE Trans. Cognit. Dev. Syst. 9(4), 316–327 (2016)

    Article  Google Scholar 

  53. Alpaydin, E.: Introduction to Machine Learning, MIT press (2020)

  54. Alzubi, J.; Nayyar, A.; Kumar, A.: Machine learning from theory to algorithms: an overview. J. Phys. Conf. Ser. 1142(1), 012012 (2018)

    Article  Google Scholar 

  55. Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X.: Applied Logistic Regression. Wiley, New York (2013)

    Book  Google Scholar 

  56. Song, Y.Y.; Ying, L.U.: Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry 27(2), 130 (2015)

    Google Scholar 

  57. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1007/BF00116251.

    Article  Google Scholar 

  58. Qi, Y.: Random forest for bioinformatics. In: Ensemble Machine Learning, Springer, Boston, MA, pp. 307–323 (2012)

  59. Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I.: Random forests and decision trees. Int. J. Comput. Sci. Issues (IJCSI) 9(5), 272 (2012)

    Google Scholar 

  60. Bozkurt, F., Altay, Ş.Y., Yağanoğlu, M.: Yapay Sinir Ağları ile Ankara İlinde Hava Kalitesi Sağlık İndeksi Tahmini. 2.Ulusal Yönetim Bilişim Sistemleri Kongresi. Erzurum, Türkiye, pp. 321–331 (in Turkish with an abstract in English) (2015)

  61. Svozil, D.; Kvasnicka, V.; Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemometr. Intell. Lab. Syst. 39(1), 43–62 (1997). https://doi.org/10.1016/S0169-7439(97)00061-0.

    Article  Google Scholar 

  62. Sansano, E.; Montoliu, R.; Belmonte Fernández, Ó.: A study of deep neural networks for human activity recognition. Comput. Intell. 36(3), 1113–1139 (2020). https://doi.org/10.1111/coin.12318.

    Article  Google Scholar 

  63. Zhang, L., Wu, X., Luo, D.: Human activity recognition with HMM-DNN model. In: IEEE/2015 IEEE 14th International Conference on Cognitive Informatics and Cognitive Computing, Beijing, China, pp. 192–197 (2015)

  64. Zhao, L.; Wang, Q.; Jin, B.; Ye, C.: Short-term traffic flow intensity prediction based on CHS-LSTM. Arab. J. Sci. Eng. 45, 10845–10857 (2020). https://doi.org/10.1007/s13369-020-04862-3.

    Article  Google Scholar 

  65. Arora, A.; Chakraborty, P.; Bhatia, M.P.S.: Analysis of data from wearable sensors for sleep quality estimation and prediction using deep learning. Arab. J. Sci. Eng. 45, 10793–10812 (2020). https://doi.org/10.1007/s13369-020-04877-w.

    Article  Google Scholar 

  66. Singh, T.; Vishwakarma, D.K.: A deeply coupled ConvNet for human activity recognition using dynamic and RGB images. Neural Comput. Appl. 33(1), 469–485 (2021)

    Article  Google Scholar 

  67. Wang, S., Zhu, X.: A hybrid deep neural networks for sensor-based human activity recognition. In: 2020 12th International Conference on Advanced Computational Intelligence (ICACI), pp. 486–491 (2020)

  68. Ronald, M., Poulose, A., Han, D. S.: iSPLInception: an inception-ResNet deep learning architecture for human activity recognition. IEEE Access (2021)

  69. Kwapisz, J.R.; Weiss, G.M.; Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  70. Ragab, M. G., Abdulkadir, S. J., Aziz, N.: Random search one dimensional CNN for human activity recognition. In: IEEE In 2020 International Conference on Computational Intelligence, ICCI, pp. 86–91 (2020)

  71. Bashar, S.K., Al Fahim, A., Chon, K.H.: Smartphone based human activity recognition with feature selection and dense neural network. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5888–5891 (2020)

  72. Arigbabu, O.A.: Entropy decision fusion for smartphone sensor based human activity recognition. arXiv preprint arXiv:2006.00367 (2020)

  73. Shuvo, M.M.H., Ahmed, N., Nouduri, K., Palaniappan, K.: A Hybrid approach for human activity recognition with support vector machine and 1D convolutional neural network. In: 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–5 (2020)

  74. Ghate, V.; Hemalatha, C.S.: Hybrid deep learning approaches for smartphone sensor-based human activity recognition. Multimed. Tools Appl. (2021). https://doi.org/10.1007/s11042-020-10478-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhat Bozkurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozkurt, F. A Comparative Study on Classifying Human Activities Using Classical Machine and Deep Learning Methods. Arab J Sci Eng 47, 1507–1521 (2022). https://doi.org/10.1007/s13369-021-06008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06008-5

Keywords

Navigation