Abstract
Character recognition is one of the most successful applications of artificial neural network methods. However, most of the work has been dedicated to the recognition of Latin handwritten characters, and only few studies have been devoted to the recognition of Arabic handwritten characters. This paper presents an off-line recognition system for Arabic handwritten characters. In this context, we use 66 statistical, structural, and regional characteristics extracted using five methods. These characteristics are treated by a feed-forward neural network with a hidden layer. To this end, we use our database for Arabic handwritten characters and ligatures (DBAHCL) in the learning, test and validation phases. The accuracy generated by our system is about 98.27%.
Similar content being viewed by others
References
Guillaud, H.: Notre cerveau à l’heure des nouvelles lectures, http://internetactu.blog.lemonde.fr/2013/01/11/notre-cerveau-a-lheure-des-nouvelles-lectures/. Accessed 11 January (2013)
Dehaene, S.: Les neurones de la lecture, A Book. Editions Odile Jacob, Paris (2007)
Menasri, F.: Contributions à la reconnaissance de l’écriture arabe manuscrite, Ph.D. thesis, Paris Descartes University (2008)
Lorigo, L.M.; Govindaraju, V.: Offline Arabic handwriting recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 712–724 (2006)
Alaei, A.; Pal, U.; Nagabhushan, P.: Dataset and ground truth for handwritten text in four different scripts. Int. J. Pattern Recognit. Artif. Intell. 26(04), 1253001 (2012)
Chergui, L.: Combinaison de classifieurs pour la reconnaissance de mots arabes manuscrits, Ph.D. Thesis, Mentouri Constantine University (2012)
Lamghari, N.; Charaf, M.E.H.; Raghay, S.: A feature extraction method for handwritten arabic characters. In: Proceeding of Computer Science, Optimization and Systems Modelization (CSOSM’15), Kenitra, Morocco (2015)
Lamghari, N.; Charaf, M.E.H.; Raghay, S.: Reconnaissance des caractères manuscrits arabes: une méthode de test de similarité. In: International Francophone Conference AAFD & SFC (2016)
Märgner, V.; Haikal, E.: Guide to OCR for Arabic Scripts. SpringerLink: Bücher, New York (2012). https://doi.org/10.1007/978-1-4471-4072-6
Cheriet, M.; Kharma, N.; Liu, C.L.; Suen, C.Y.: Character Recognition Systems: A Guide for Students and Practioners. Wiley, Hoboken (2007)
Amor, N.B.; Amara, N.E.B.: Combining a hybrid approach for features selection and hidden Markov models in multifont arabic characters recognition. In: IEEE Second International Conference on Document Image Analysis for Libraries (DIAL’06) 07695-2531-8/06, (2006)
Bouchon-Meunier, B.; Marsala, C. (eds.): Logique Floue. Principes, Aide à la Décision. Hermès-Lavoisier, Paris (2003)
Benouareth, A.; Ennaji, A.; Sellami, M.: HMMs with explicit state duration applied to handwritten Arabic word recognition. In: International Conference on Pattern Recognition, IEEE (ICPR’06) 0-7695-2521-0/06 (2006)
Elbaati, A.; Boubaker, H.; Kherallah, M.; Alimi, A.M.: Arabic handwriting recognition using restored stroke chronology. In: 10th International Conference on Document Analysis and Recognition (2009)
Abed, M.A.; Abed, H.A.A.L.; Al-Deen, Z.B.; Ismail, A.N.: Fuzzy logic approach to recognition of isolated Arabic characters (2010)
Zawaideh, F. H.: Arabic hand written character recognition using modified multi-neural network. J. Emerg. Trends Comput. Inf. Sci., 3:1021–1026, ISSN 2079–8407 (2012).
Al Hamad, H.A.: Use an efficient neural network to improve the Arabic handwriting recognition. In: International Conference on Systems, Control, Signal Processing and Informatics (2013)
Lawgali, A.: Handwritten digit recognition based on DWT and DCT. Int. J. Database Theory Appl. 8(5), 215–222 (2015)
Elanwar, R.I.M.; Rashwan, M.A.A.; Mashali, S.: A multiple classifiers system for solving the character recognition problem in Arabic alphabet. In: Conference Paper (2006)
Abandah, G.; Anssari, N.: Novel moment features extraction for recognizing handwritten Arabic letters. J. Comput. Sci. 5(3), 226 (2009)
Lamghari, N.; Charaf, M.E.H.; Raghay, S.: Template matching for recognition of handwritten Arabic characters using structural characteristics and Freeman code. Int. J. Comput. Sci. Inf. Secur. 14(12), 31 (2016)
Hu, M.K.: Visual pattern recognition by moment invariant. IRE Trans. Inf. Theory 8, 179–187 (1962)
Ramteke, R.J.; Borkar, P.D.; Mehrotra, S.C.: Recognition of isolated handwritten numerals: an invariant moment approach. In: International Conference on Cognition and Recognition (ICCR 2005), Mysore, (Karnataka), India on 22nd–23rd Dec. (2005)
Ming-Kuei, H.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)
Mars, A.; Antoniadis, G.: Arabic online handwriting recognition using neural network. Int. J. Artif. Intell. Appl. (IJAIA), 7(5), 51–59 (2016)
Zhang, G.P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. Part C 30(4), 641–662 (2000)
Sheela, K.G.; Deepa, S.N.: Review on Methods to Fix Number of Hidden Neurons in Neural Networks. Hindawi Publishing Corporation Mathematical Problems in Engineering, Cairo (2013). https://doi.org/10.1155/2013/425740
Rady, H.: Reyni’s entropy and mean square error for improving the convergence of multilayer backprobagation neural networks: a comparative study. Int. J. Electr. Comput. Sci. IJECS-IJENS, 11(05) 68–79 (2011)
Lamghari, N.; Raghay, S.: DBAHCL: Database for Arabic handwritten characters and ligatures. Int. J. Multimed Inf. Retr. https://doi.org/10.1007/s13735-017-0127-x
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lamghari, N., Charaf, M.E.H. & Raghay, S. Hybrid Feature Vector for the Recognition of Arabic Handwritten Characters Using Feed-Forward Neural Network. Arab J Sci Eng 43, 7031–7039 (2018). https://doi.org/10.1007/s13369-017-2969-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-017-2969-1