Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A systematic literature review of sparsity issues in recommender systems

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

The tremendous expansion of information available on the web voraciously bombards users, leaving them unable to make decisions and having no way of stepping back to process it all. Recommender systems have emerged in this context as a solution to assist users by providing them with choices of appropriate and relevant items according to their preferences and interests. However, despite their success in many fields and application domains, they still suffer from the main limitation, known as the sparsity problem. The latter refers to the situation where insufficient transactional and feedback data are available for inferring specific user’s similarities, which affects the accuracy and performance of the recommender system. This paper provides a systematic literature review to investigate, analyze, and discuss the existing relevant contributions and efforts that use new concepts and tools to alleviate the sparsity issues. We have investigated the contributed similarity measures and have uncovered proposed approaches in different types of recommender systems. We have also identified the types of side information more commonly employed by recommender systems. Furthermore, we have examined the criteria that should be valued to enhance recommendation accuracy on sparse data. Each selected article was evaluated for its ability to mitigate the sparsity impediment. Our findings emphasize and accentuate the importance of sparsity in recommender systems and provide researchers and practitioners with insights on proposed solutions and their limitations, which contributes to the development of more powerful systems that can significantly solve the sparsity hurdle and thus enhance further the accuracy and efficiency of recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. www.grouplens.org.

  2. www.netflixprize.com.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouhaila Idrissi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrissi, N., Zellou, A. A systematic literature review of sparsity issues in recommender systems. Soc. Netw. Anal. Min. 10, 15 (2020). https://doi.org/10.1007/s13278-020-0626-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-020-0626-2

Keywords

Navigation